
Distributed management of competitive
access to common resources using

algorithmic game theory

REMOUS-ARIS KOUTSIAMANIS

Department of Electrical and Computer Engineering
Democritus University of Thrace

Advisor: Pavlos S. Efraimidis

A thesis submitted for the degree of
Doctor of Philosophy

Xanthi, February 2016

mailto:ariskou@gmail.com
http://www.ee.duth.gr
http://www.duth.gr
mailto:pefraimi@ee.duth.gr

Copyright © 2016 REMOUS-ARIS KOUTSIAMANIS

Democritus University of Thrace
Department of Electrical and Computer Engineering

Building A, ECE, University Campus, 67100 Xanthi, Greece

All rights reserved. No parts of this book may be reproduced or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author.

mailto:ariskou@gmail.com
http://www.duth.gr
http://www.ee.duth.gr

I would like to dedicate this thesis to my parents.

Acknowledgements

I would first like to express my sincere thankfulness and gratitude
to my PhD advisor Professor Pavlos Efraimidis, who has guided and
supported me throughout my studies and who has helped me with
ideas, advice and time to successfully complete my studies.

I would then like to thank my very helpful advisory committee mem-
bers Professor Alexandros S. Karakos and Professor Paul Spirakis,
for promptly attending to all necessary academic and administrative
issues with respect to my PhD studies. I would also like to thank
the members of my defence committee, Professor Maria Satratzemi,
Professor Spyros Kontogiannis, Professor Vassilis Tsaoussidis and
Professor Avi Arampatzis, for carefully evaluating my work, propos-
ing further avenues for exploration and contributing to a stimulating
and very enjoyable process. I would like to especially thank Professor
Vassilis Tsaoussidis and Professor Avi Arampatzis for our insightful
discussions and their guidance and support.

During my PhD studies I worked in parallel at the Xanthi branch of
the ATHENA R.C., under the supervision of Dr. Christos Emmanoui-
lidis. To a large extent, I owe the objective ability to perform my PhD
to his incredible support as well as becoming a more methodical,
ethical and mature researcher. Christos, thank you for everything
from the bottom of my heart.

In the course of my studies I have been fortunate to collaborate with
a large number of kind and inspiring people. I would like to thank
Professor Dimitris Gritzalis, Dr. Yiannis Soupionis and Lazaros Tsav-
lidis for their constructive collaboration in preparing the joint works

v

described in this thesis. I would also like to especially thank Pro-
fessor Vasilis Katos for providing fantastic extracurricular opportu-
nities as well as being a model of a thoughtful and efficient academic.

I should note that I would not have pursued the academic path had it
not been for the inspiration and guidance provided to me by my past
advisors; Professor Themis Panayiotopoulos and Professor Michael
Rovatsos thank you very much for your sincere and thoughtful en-
couragement and support.

Many of my long-time friends have been very supportive and I would
like to thank them in no particular order and in brief here; Ioannis
Paraskevopoulos for all the deep discussions, for helping me keep
a positive perspective and for making me feel like I actually know
more than I really do, Fotis Nalbadis for being an unending source of
fun and relaxation and for making me take time off for decompres-
sion despite my protestations, Dr. Aris Belesiotis for being a great
listener and a relaxed and insightful friend, Kostas Tilelis for always
being brutally honest, compassionate, supportive, challenging me to
improve myself and also for the sense of humour I partially rubbed
off of him, Apostolis Hardalias for always being supportive, kind
and grumpy.

I would also like to thank some of the good friends I made during
my studies; Dr. George Drosatos for being a kind and very sup-
portive colleague during this time, Kostantinos Pyloudis and Viky
Barboka for being great friends and guinea pigs for my next steps,
Dr. Michalis Savelonas and Maria Douma for so graciously entertain-
ing my hypotheticals and for always being supportive counsellors,
Kostas Zagoris for his insightful and fun approach to all discussion
topics, Dr. George Hlapanis for his warm friendship and for being
my mentor, and Dr. Savvas Chatzichristofis for his academic support
and fun company.

vi

There is one person I owe a large part of my accomplishments to
and who has been my rock during both the happy times and the
difficulties, my partner in life Aimilia. I sometimes cannot believe
my luck in finding this incredible, intelligent, compassionate and
fun partner and I am not sure I could have managed it all without
her. She has my eternal gratitude and love.

I would also like to thank Aimilia’s family for their welcome and
warm embrace into their family and for their patience and support
during all this time.

Lastly, but by no means least, I want to express my love, respect and
indebtedness to my unconditional supporters, my parents. They are
the reason I have become the person who I am and by extension this
is their accomplishment as much as it is mine. I hope to be able to
sometime repay them for all their efforts and sacrifices.

vii

Abstract

The Internet is today an inextricable part of daily personal, educa-
tional and business activity, turning any problems in its operation
or availability into a significant interruption of these activities and
their users. The resources offered by the Internet (capacity, cover-
age) are continuously increasing but at the same time the users and
their demands are increasing at an even larger pace. If measures for
the efficient and fair management of the network resources are not
taken, the Internet will cease to be able to support new users and
applications with high quality.
Internet users operate in an independent manner, by creating data
flows (sending and receiving network packets) which satisfy their
demands. Each user prefers for his needs to be served in the best
possible way but the resources of the network are shared and finite,
making it often impossible to provide the best service to everyone.
This leads to users competing amongst themselves for access to the
network resources and its services.
Whenever the demands placed on the services by the users exceed
the capacity of the services, a means of selecting which users and
to which degree they will be served is required. In the case of the
Internet, the resources are network capacity, the demands of the users
are requests for transferring network packets and the functionality of
selecting which users are served and how they are served is generally
referred to as Quality of Service (QoS).
One feature of the Internet which significantly affects the possible
solutions to providing QoS is its decentralized structure: there exists
no central authority which is responsible for the whole operation of
the network and which could centrally perform the resource alloca-
tion. Instead, resources are allocated locally at each network node to
the users which access it.
In this work, we address the issue of managing competitive access to
common resources through the use of algorithmic game theory. This
approach is validated by the competitive, selfish and independent

ix

nature of the users. Additionally, in the case of QoS provision for the
Internet, our solutions have to be distributed in order to be applicable.
Specifically, we start by proposing the Prince mechanism for dis-
tributing network flow throughput in a (MaxMin-resembling) fair
manner. We then propose an efficient data structure and algorithm
set for implementing Prince on a network router queue.
We continue by providing the theoretical description and first simple
experimental implementation of PacketEconomy, a network economy
where each flow is modelled as a population of rational network
packets, and these packets can self-regulate their access to network
resources by mutually trading their positions in router queues. This
theoretical model is then adapted to the OMNET++ simulator and via
thorough experimentation we present the validation of the efficacy
of our solution in a realistic context.
Applying the same principles of game-theoretic analysis to realistic
service provision problems, we also study an Internet-based VoIP
service access problem in the context of the prevention of SPIT (SPam
over Internet Telephony).

x

Extended Abstract in Greek

Αποκεντρωμένη διαχείριση ανταγωνιστικής
πρόσβασης σε κοινόχρηστους πόρους με

αλγοριθμική θεωρία παιγνίων

Το Διαδίκτυο σήμερα αποτελεί αναπόσπαστο μέρος καθημερινής ιδιω-
τικής, εκπαιδευτικής και επιχειρηματικής δραστηριότητας, με αποτέλε-
σμα προβλήματα στη λειτουργία του να προκαλούν σημαντικές διατα-
ραχές σε αυτές τις δραστηριότητες και να επηρεάζονται οι χρήστες του.
Οι πόροι που διαθέτει το Διαδίκτυο (χωρητικότητα, συνδέσεις) αυξά-
νονται διαρκώς αλλά ταυτόχρονα, με μεγαλύτερο ρυθμό, αυξάνονται
οι χρήστες του και οι απαιτήσεις των εφαρμογών τις οποίες καλείται
να υποστηρίξει. Αν δεν ληφθούν μέτρα για την αποδοτική διαχείριση
και την δίκαιη κατανομή των πόρων δικτύου, το Διαδίκτυο θα πάψει
να έχει την δυνατότητα να υποστηρίζει νέους χρήστες και εφαρμογές
και να διασφαλίζει υψηλή ποιότητα παροχής υπηρεσιών.
Οι χρήστες του Διαδικτύου λειτουργώντας ανεξάρτητα ο ένας από τον
άλλο δημιουργούν ροές δεδομένων (στέλνοντας και λαμβάνοντας πακέ-
τα δεδομένων) οι οποίες χρησιμοποιούν τους κοινόχρηστους και πεπε-
ρασμένους πόρους του Διαδικτύου. Καθώς κάθε χρήστης προτιμά την
καλύτερη δυνατή εξυπηρέτηση για τις ροές του και καθώς η χωρητικό-
τητα του δικτύου επιτρέπει συχνά μόνο ένα υποσύνολο των πακέτων
να εξυπηρετηθούν, δημιουργείται ανταγωνισμός κατά την πρόσβαση
στους κοινόχρηστους πόρους.
Καθώς δεν υπάρχει κάποια κεντρική αρχή που να είναι υπεύθυνη για
την ανάθεση πρόσβασης στους πόρους του δικτύου, η πρόσβαση ανα-
τίθεται με αποκεντρωμένο τρόπο σε κάθε δρομολογητή. Οι χρήστες
του δικτύου μπορούν να υποβάλουν ένα αυθαίρετο πλήθος από πακέ-
τα ανά πάσα στιγμή στο δίκτυο και ο κάθε δρομολογητής αποφασίζει
πόσα και ποια θα δεχθεί και πως θα τα εξυπηρετήσει. Η έλλειψη συν-
τονισμού μεταξύ των ανεξάρτητων ροών οδηγεί το Διαδίκτυο να εμ-
φανίζει μια ”άναρχη” μορφή λειτουργίας και δημιουργεί προβλήματα
τα οποία μπορούν να αντιμετωπιστούν με έννοιες και εργαλεία από

xi

την αλγοριθμική θεωρία παιγνίων. Πιο συγκεκριμένα, ο στόχος είναι
να βρεθούν οι προϋποθέσεις και ο τρόπος επίτευξης δίκαιης, αποδοτι-
κής και υπολογιστικά εφικτής (tractable) αποκεντρωμένης διαχείρισης
πόρων σε δίκτυα υπολογιστών.

Στα παιγνιοθεωρητικά μοντέλα αυτό που ενδιαφέρει συνήθως είναι να
διερευνηθεί ποιες είναι οι καταστάσεις ισορροπίας του συστήματος.
Μια από τις πιο σημαντικές κατηγορίες καταστάσεων ισορροπίας εί-
ναι οι ισορροπία Nash (Nash Equilibrium). Στην ισορροπία Nash κα-
νένας παίκτης/χρήστης δεν έχει κίνητρο να αλλάξει τη στρατηγική του
οπότε από τη στιγμή που θα επιτευχθεί αυτή η ισορροπία το σύστη-
μα σταθεροποιείται σε αυτή την κατάσταση. Είναι συχνά επιθυμητό
ένα παίγνιο να τείνει προς μια τέτοια ισορροπία αλλά έχει αποδειχθεί
πως η υπολογιστική πολυπλοκότητα εύρεσης των Ισορροπιών Nash
ακόμα και σε απλά μοντέλα είναι PPAD-complete [17], κάνοντάς τις
ενδεχομένως δύσκολο να επιτευχθούν. Επιπλέον, η έρευνα στο χώρο
στην συντριπτική της πλειοψηφία έχει ασχοληθεί με θεωρητικά μοντέ-
λα δικτυακών παιγνίων τα οποία απέχουν σημαντικά από την δομή και
την λειτουργία των πραγματικών δικτύων. Για τους παραπάνω λόγους
καθίσταται σημαντική η μελέτη αυτών των μοντέλων όχι μόνο θεωρη-
τικά αλλά και πειραματικά, ώστε να αποδειχθεί η πρακτική υλοποιησι-
μότητα του μοντέλου και η ρεαλιστική μελέτη των επιδόσεων και των
χαρακτηριστικών του.

Η παρούσα διδακτορική έρευνα περιλαμβάνει τη διερεύνηση των τρό-
πων αξιοποίησης της αλγοριθμικής θεωρίας παιγνίων για την κατα-
σκευή αποκεντρωμένων μηχανισμών διαχείρισης πρόσβασης σε πόρους
δικτύου. Βασική αρχή της έρευνας είναι ότι η δημιουργία κατάλληλων
αλγορίθμων διαχείρισης των πόρων, τέτοιων που να δίνουν κίνητρο
στους χρήστες να ρυθμίζουν σωστά τις ροές δεδομένων τους, οδηγούν
στα επιθυμητά αποτελέσματα για όλους τους χρήστες. Χωρίς τα κατάλ-
ληλα κίνητρα οι χρήστες, συμπεριφερόμενοι εγωιστικά, κάνουν κατά-
χρηση των κοινών πόρων και ζημιώνουν και τρίτους χρήστες. Στόχος
είναι η σχεδίαση, υλοποίηση και μελέτη της συμπεριφοράς τέτοιων αλ-
γορίθμων σε θεωρητικό και πειραματικό επίπεδο.

Με βάση τις παραπάνω επιδιώξεις, προτάθηκαν και υλοποιήθηκαν οι
παρακάτω εργασίες που επιδιώκουν την ανταγωνιστική διαχείριση πό-
ρων:

• Η πολιτική ουράς εξυπηρέτησης δρομολογητή Prince, που δίνει
αντικίνητρο σε χρήστες να καταλαμβάνουν δυσανάλογο (του δί-
καιου μεριδίου τους) χώρο στην πεπερασμένου μεγέθους ουρά του

xii

δρομολογητή. Ο στόχος είναι όλοι ο χρήστες σε συνθήκες συμφό-
ρησης να παίρνουν, αν το ζητούν, το δίκαιο μερίδιό τους. Τρεις
παραλλαγές της πολιτικής προτείνονται και μελετώνται, με δια-
φορετικές δικτυακές επιδόσεις και υπολογιστικές απαιτήσεις.

• Ο αλγόριθμος ροών δεδομένων HL-Hitters που πραγματοποιεί
την εύρεση και τον περιορισμό της πιο επιβαρυντικής ροής στην
ουρά εξυπηρέτησης δρομολογητή σε σταθερό χρόνο (O(1)). Ο
αλγόριθμος επιτρέπει την αποτελεσματική υλοποίηση της πιο δί-
καιης παραλλαγής από τις πολιτικές ουράς Prince.

• Η θεωρητική σχεδίαση και μελέτη του συστήματος PacketEconomy,
που με την εισαγωγή ενός ανταλλάξιμου είδους, εικονικών «χρη-
μάτων», εξετάζει κατά πόσο είναι δυνατόν να οδηγηθεί το δίκτυο
σε υψηλή απόδοση με υπολογιστικά απλούς και εφικτούς μηχανι-
σμούς. Οι χρήστες δεν καλούνται να πληρώσουν με πραγματικά
χρήματα για τη χρήση του δικτύου, αλλά το «χρήμα» κινεί μηχα-
νισμούς διαχείρισης των πόρων και επιτρέπει την έκφραση των
προτιμήσεων εξυπηρέτησης (Quality of Service) των ροών των
χρηστών με κοινούς οικονομικούς όρους.

• Ηπρακτική υλοποίηση και μελέτη του συστήματος PacketEconomy
σε εξομοιωτή δικτύων, για την εξέταση της υλοποιησιμότητας και
της απόδοσής του σε ρεαλιστικό περιβάλλον με ροές πολλαπλών
τύπων καθώς και η παιγνιοθεωρητική συμπεριφορά του σε αυτό
το περιβάλλον.

• Η παιγνιοθεωρητική ανάλυση της αποτροπής ανεπιθύμητων κλή-
σεων σε περιβάλλον Διαδικτυακής τηλεφωνίας (VoIP), όπου με
την δημιουργία και μελέτη ενός μοντέλου χρήσης μιας τέτοιας υ-
πηρεσίας αναζητείται με ποιους τρόπους και με ποιες ρυθμίσεις
ενός φίλτρου ηχητικού CAPTCHA επιτυγχάνεται η καλύτερη δυ-
νατή κατανομή πόρων της υπηρεσίας στους επιθυμητούς χρήστες
και αποτρέπονται οι ανεπιθύμητοι.

Οι εργασίες αυτές αποδεικνύουν ότι είναι εφικτή η χρήση της αλγοριθ-
μικής θεωρίας παιγνίων για την σχεδίαση πραγματικών μηχανισμών
διαχείρισης πόρων και ότι η πρακτική υλοποίησή τους μπορεί να ο-
δηγήσει σε συστήματα με τα επιθυμητά χαρακτηριστικά απόδοσης και
δικαιοσύνης. Συνοπτικές περιγραφές των εργασιών δίνονται παρακά-
τω στις περιλήψεις των αντίστοιχων κεφαλαίων της διατριβής.

xiii

ΔΟΜΗ ΤΗΣ ΔΙΑΤΡΙΒΗΣ

Παρακάτω συνοψίζονται τα περιεχόμενα των κεφαλαίων της διατρι-
βής:

Κεφάλαιο 1: Introduction

Περιγράφονται τα κίνητρα και οι στόχοι της παρούσας διατριβής. Πε-
ριγράφεται η σημερινή κατάσταση σε σχέση με την διαχείριση πόρων
δικτύων, ποια προβλήματα αντιμετωπίζονται και ποια είναι τα χαρα-
κτηριστικά των λύσεων που αναζητούνται.

Κεφάλαιο 2: Background

Παρέχεται το απαραίτητο υπόβαθρο για τη κατανόηση των βασικών
εννοιών που χρησιμοποιούνται σε αυτή την διατριβή. Πιο συγκεκρι-
μένα, πρώτα περιγράφονται έννοιες που αφορούν τα δίκτυα, όπως οι
αλγόριθμοι και οι πολιτικές ουρών που χρησιμοποιούνται καθώς τα εί-
δη και τα χαρακτηριστικά των ροών δεδομένων. Στη συνέχεια περι-
γράφονται οι έννοιες της αλγοριθμικής θεωρίας παιγνίων που χρησι-
μοποιούνται ως δομικά στοιχεία στην ανάπτυξη των προτεινόμενων
λύσεων της διατριβής.

Κεφάλαιο 3: Prince: an Effective RouterMechanism forNetworkswith
Selfish Flows

Περιγράφεται η πολιτική ουράς εξυπηρέτησης δρομολογητή Prince,
που σκοπό έχει την δίκαιη κατανομή δικτυακών πόρων στις ροές δε-
δομένων που τους χρησιμοποιούν. Πιο συγκεκριμένα, ξεκινώντας από
την αρχή ότι οι δρομολογητές δεν προστατεύονται από επιθετικές ή
μη-ανταποκρίνουσες ροές, προτείνεται η ενεργή πολιτική διαχείρισης
ουράς Prince. Η βασική ιδέα είναι η προστασία το δίκαιο μερίδιο των
μη-επιθετικών ροών, μέσω παιγνιοθεωρητικής προσέγγισης που δίνει
αντικίνητρο κακής συμπεριφοράς στην πιο επιβαρυντική ροή απορρί-
πτοντας πακέτα της όταν υπάρχει συμφόρηση.

Δημιουργούνται τρεις παραλλαγές της πολιτικής Prince (Prince-G/S/A),
και η συμπεριφορά και οι επιδόσεις τους μετρώνται με την χρήση του
προσομοιωτή ns-2. Τα αποτελέσματα δείχνουν η Prince μοιάζει σε συμ-
περιφορά με την πολιτική MaxMin fairness.

xiv

Κεφάλαιο 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

Σε αυτό το κεφάλαιο περιγράφεται ο HL-Hitters, ένας αλγόριθμος ρο-
ών δεδομένων που επιτυγχάνει την εύρεση και τον περιορισμό της πιο
επιβαρυντικής ροής στην ουρά εξυπηρέτησης δρομολογητή. Ο αλ-
γόριθμος επιλύει το πρόβλημα με ακριβή (μη-προσεγγιστικό) τρόπο
σε σταθερό χρόνο (O(1)) με υψηλή πιθανότητα και για την λειτουργία
εύρεσης και για την λειτουργία ενημέρωσης. Επιπρόσθετα, δίνει πρό-
σβαση στο πρώτο και τελευταίο πακέτο μίας ροής σε σταθερό χρόνο.
Αυτές οι ιδιότητες επιτρέπουν την αποτελεσματική υλοποίηση της βέλ-
τιστης παραλλαγής της Prince.

Στο κεφάλαιο περιγράφεται η δομή δεδομένων και αλγόριθμοι που υ-
λοποιούν αυτή τη λειτουργικότητα και εξηγείται πως χρησιμοποιούν-
ται. Επιπλέον, πραγματοποιούνται μετρήσεις επιδόσεων που παρά-
γουν ποσοτικά αποτελέσματα τα οποία επιβεβαιώνουν τα θεωρητική
περιγραφή και ότι η υλοποίηση είναι αρκετά υψηλών επιδόσεων ώστε
να χρησιμοποιηθεί σε πρακτικές εφαρμογές.

Κεφάλαιο 5: OnMoney as a Means of Coordination between Network
Packets

Περιγράφεται θεωρητική σχεδίαση και μελέτη του PacketEconomy, ε-
νός συστήματος που στοχεύει στον συντονισμό ροών δεδομένων με τη
χρήση της έννοιας ενός ανταλλάξιμου είδους, εικονικών «χρημάτων».
Στο σύστημα κάθε ροή δεδομένων μοντελοποιείται ως ένας πληθυσμός
από ορθολογικά πακέτα δικτύου και αυτά τα πακέτα μπορούν να αυ-
τορρυθμίσουν την πρόσβασή τους στους κοινόχρηστους δικτυακούς
πόρους ανταλλάσοντας θέσεις εντός των ουρών αναμονής των δρο-
μολογητών. Τα πακέτα δεν καλούνται να πληρώσουν με πραγματικά
χρήματα για τη χρήση του δικτύου, αλλά το «χρήμα» κινεί μηχανισμούς
διαχείρισης των πόρων και επιτρέπει την έκφραση των προτιμήσεων
εξυπηρέτησης (Quality of Service) των ροών με κοινούς οικονομικούς
όρους.

Μελετάται το μοντέλο Markov της ανταλλαγής και αποδεικνύεται ό-
τι υπάρχουν ισορροπίες Nash όπου πραγματοποιούνται ανταλλαγές
θέσεων μεταξύ των πακέτων. Επιπλέον, το βασικό υπολογιστικό βή-
μα του PacketEconomy είναι εκτελέσιμο σε σταθερό χρόνο (O(1)) σε
παράλληλο υλικό επιτρέποντας την υλοποίηση σε σύγχρονους δρομο-
λογητές.

xv

Κεφάλαιο 6: Implementing PacketEconomy: DistributedMoney-based
QoS in OMNET++

Περιγράφεται η πρακτική υλοποίηση και μελέτη του PacketEconomy
σε εξομοιωτή δικτύων. Αρχικά, γενικεύεται η μορφή της συνάρτησης
ωφέλειας ώστε να καλύπτει ένα μεγαλύτερο εύρος μορφών. Στη συνέ-
χεια, περιγράφεται πως το μοντέλο τροποποιείται ώστε να προσαρμο-
στεί στο ρεαλιστικό περιβάλλον δικτύου που υλοποιείται στον προσο-
μοιωτή OMNET++ με την βιβλιοθήκη μοντέλων δικτύου INET. Η προ-
σομοίωση πραγματοποιείται σε δίκτυο νέας γενιάς IPv6 εκμεταλλευό-
μενη τις δυνατότητες επέκτασης των μεταπληροφοριών (IPv6 extension
headers) που μπορούν τα πακέτα να αποθηκεύσουν.
Υλοποιούνται ροές δεδομένων που χρησιμοποιούν τις δυνατότητες του
PacketEconomy και με μεγάλο αριθμό προσομοιώσεων μετράται η συμ-
περιφορά και οι επιδόσεις τους. Επιπλέον, πραγματοποιούνται προσο-
μοιώσεις με ροές που δεν χρησιμοποιούν το PacketEconomy για λόγους
σύγκρισης.
Τα αποτελέσματα δείχνουν ότι το PacketEconomy λειτουργεί σε ρεαλι-
στικά δίκτυα, παρέχει την δυνατότητα συντονισμού και αυτορύθμισης
στις ροές δεδομένων , παιγνιοθεωρητικά παρέχει κίνητρο στις ροές να
το χρησιμοποιήσουν συμμετέχοντας και συμπεριφέρεται συγκρίσιμα με
άλλες πολιτικές ουρών έχοντας πλεονεκτήματα την αυξημένη ευελιξία
και τις υπολογιστικές επιδόσεις.

Κεφάλαιο 7: AGame-theoretic Analysis of Preventing Spamover Internet
Telephony via Audio CAPTCHA-based Authentication

Περιγράφεται η παιγνιοθεωρητική ανάλυση της αποτροπής ανεπιθύ-
μητων κλήσεων σε περιβάλλον Διαδικτυακής τηλεφωνίας (VoIP). Αρ-
χικά περιγράφεται το πρόβλημα των ανεπιθύμητων κλήσεων σε περι-
βάλλον Διαδικτυακής τηλεφωνίας (VoIP) και των μεθόδων αντιμετώπι-
σής του. Το ηχητικό CAPTCHA (Completely Automated Public Turing
Test to Tell Computer and Humans Apart), μία από τις μεθόδους, υπο-
χρεώνει τον καλώντα να αποδείξει ότι είναι άνθρωπος και όχι αυτομα-
τοποιημένο λογισμικό απαντώντας ερωτήσεις. Επιπλέον, ένα ανακρι-
βές φίλτρο επιτρέπει ή απορρίπτει την πρόσβαση σε καλώντες.
Στο κεφάλαιο πραγματοποιείται παιγνιοθεωρητική ανάλυση του προ-
βλήματος, όπου με την δημιουργία και μελέτη ενός μοντέλου χρήσης
μιας τέτοιας υπηρεσίας αναζητείται με ποιους τρόπους και με ποιες
ρυθμίσεις ενός φίλτρου και ενός ηχητικού CAPTCHA επιτυγχάνεται η
καλύτερη δυνατή κατανομή πόρων της υπηρεσίας στους επιθυμητούς

xvi

χρήστες και αποτρέπονται οι ανεπιθύμητοι.
Οι χρήστες μοντελοποιούνται ως εγωιστές αλλά ορθολογικοί παίκτες
και χωρίζονται σε ανεπιθύμητους και επιθυμητούς. Το σύστημα υποδο-
χής των κλήσεων μοντελοποιείται ως ένα παίγνιο το οποίο αντιπροσω-
πεύει την αλληλεπίδραση των καλούντων με το τηλεφωνικό σύστημα.
Τα αποτελέσματα αυτής της προσέγγισης δείχνουν ότι οι αμυντικές τε-
χνικές που χρησιμοποιήθηκαν οδηγούν σε επιθυμητές ισορροπίες Nash
όπου ταCAPTCHAσυμβάλλουν στηνωφέλεια (utility) των επιθυμητών
χρηστών. Επίσης, το μοντέλο δείχνει ότι ακόμα και αν οι ανεπιθύμητοι
καλώντες γνωρίζουν τα χαρακτηριστικά των αμυντικών τεχνικών δεν
μπορούν να εξάγουν οφέλη από αυτές τις γνώσεις.

Κεφάλαιο 8: Conclusions and Directions

Για την ολοκλήρωση της διατριβής το κεφάλαιο αυτό περιγράφει τις
κύριες συνεισφορές της δουλειάς αυτής και παρέχει μια επισκόπηση
των εν εξελίξει και μελλοντικών εργασιών. Πιο αναλυτικά, σε αυτή τη
διατριβή, μελετήθηκαν προβλήματα με παιγνιοθεωρητικούς όρους και
προτάθηκαν μηχανισμοί, αλγόριθμοι, δομές δεδομένων και συστήματα
για την επίτευξη της ανταγωνιστικής πρόσβασης σε κοινόχρηστους
πόρους. Μέσω των προτεινόμενων λύσεων παρέχεται ένας αποτελε-
σματικός τρόπος αντιμετώπισης αυτού του προβλήματος γεγονός που
αποτελεί καινοτομία σε σχέση με τη σημερινή πρακτική.

xvii

Contents

Contents xix

List of Figures xxiii

List of Tables xxix

1 Introduction 1
1.1 Methodology . 3
1.2 Synopsis of Results . 4
1.3 Overview of the Thesis . 5

2 Background 9
2.1 Networking . 9

2.1.1 Network Structure . 10
2.1.2 Network Flow Types . 10

2.1.2.1 Window-based Flows 10
2.1.2.2 Rate-based Flows 11

2.1.3 Router Queue Management 11
2.2 Game Theory . 13
2.3 Related Work . 13

3 Prince: an Effective Router Mechanism for Networks with Selfish Flows 15
3.1 Introduction . 15
3.2 Related Work . 16
3.3 The Prince Algorithms . 17

3.3.1 Theoretical Arguments 18
3.3.2 Algorithm Descriptions 20
3.3.3 Effects of the Packet Size Assumption 22

3.4 Discussion . 22
3.5 Experiments . 24

xix

CONTENTS

3.5.1 Experimental Setup . 24
3.5.2 Results . 25

3.5.2.1 Synthesis of TCP Flows 25
3.5.2.2 Synthesis of UDP Flows 28
3.5.2.3 Mixed Synthesis of TCP and UDP Flows . . . 30
3.5.2.4 NE Results . 32
3.5.2.5 Comparison . 33

3.5.3 Multiple Flows . 35
3.6 Conclusions . 36

4 A Heaviest Hitters Limiting Mechanism with O(1) Time Complexity
for Sliding-window Data Streams 37
4.1 Introduction . 37
4.2 Related Work . 39
4.3 Proposed Abstract Data Type . 39

4.3.1 Building Blocks . 40
4.3.1.1 Array . 40
4.3.1.2 Doubly-linked List 40
4.3.1.3 Hash-table . 41

4.3.2 Data Structure . 42
4.3.2.1 Layout of the Data Structure 44

4.3.3 Algorithms . 44
4.3.3.1 Initialization . 44
4.3.3.2 Append . 44
4.3.3.3 Expire . 46
4.3.3.4 Query . 47
4.3.3.5 GetItem . 49

4.3.4 Space Complexity . 49
4.4 Results . 50

4.4.1 Experimental Scenarios 51
4.4.2 Experiment Setup . 52

4.5 Discussion . 52
4.5.1 Scenario 1 . 52
4.5.2 Scenario 2 . 53

4.6 Conclusions . 55

5 On Money as a Means of Coordination between Network Packets 57
5.1 Introduction . 57
5.2 An Economy for Packets . 59
5.3 Equilibria with Monetary Trades 62
5.4 The Effect of Trades . 68

xx

CONTENTS

5.5 Conclusions . 72

6 Implementing PacketEconomy: Distributed Money-based QoS in OM-
NET++ 73
6.1 Introduction . 73
6.2 Related Work . 74
6.3 Implementation . 76

6.3.1 Packet Utility Functions 76
6.3.2 Compensation Price . 77
6.3.3 PacketEconomy as a Service 78
6.3.4 Operation Overview . 80

6.3.4.1 Adaptivity . 80
6.3.5 Technical Details . 81

6.3.5.1 Extension Header Description 81
6.3.5.2 The TCP/IP Stack at Endpoints 81
6.3.5.3 The TCP/IP Stack at Routers 82
6.3.5.4 Time Source Considerations 84

6.4 Experimental Setup . 84
6.4.1 Non-QoS Configuration 84

6.4.1.1 All Cases . 85
6.4.1.2 Flow Composition Cases 86

6.4.2 QoS Configuration . 87
6.4.2.1 Layer 2 Setup . 87
6.4.2.2 Queue Parameters 87
6.4.2.3 Flow Composition Cases 88
6.4.2.4 Flow Priority . 88

6.4.3 Collected Measurements 89
6.4.4 Evaluation . 90

6.5 Experimental Results . 91
6.5.1 The TCP-only Flows Case 92
6.5.2 The UDP-only Flows Case 94
6.5.3 The TCP & UDP Flows Case 96

6.6 Game-theoretic Aspects . 99
6.6.1 Incentive to Participate . 99

6.6.1.1 The TCP-only Flows Case 100
6.6.1.2 The UDP-only Flows Case 101
6.6.1.3 The TCP & UDP Flows Case 101

6.6.2 Packet Size Variability . 102
6.6.3 Truthfulness of Packet Utility Function 105
6.6.4 Price of Anarchy / Stability 107
6.6.5 Relation to Smart Market 108

xxi

CONTENTS

6.7 Conclusions and Future Work . 109

7 A Game-theoretic Analysis of Preventing Spam over Internet Tele-
phony via Audio CAPTCHA-based Authentication 111
7.1 Introduction . 111
7.2 Related Work . 113

7.2.1 Cost of Unsolicited Communication 113
7.2.2 Game-theoretic Models 114

7.3 Suggested Game-theoretic Model 115
7.4 Game-theoretic Analysis and Nash Equilibrium 120

7.4.1 The Nash Equilibrium . 126
7.4.1.1 Case Analysis 128

7.4.2 The NE without Audio CAPTCHAs 131
7.4.3 The Benefit of Supporting Audio CAPTCHAs 132

7.5 Experimental Study . 133
7.5.1 Experimental Results & Discussion 135
7.5.2 Comparison of SpitGame and SpitGame′ 137

7.6 Conclusions and future work . 139

8 Conclusions and Directions 143

References 147

xxii

List of Figures

2.1 Structure of a dumbbell network with 𝑁 hosts on each side (2 ∗ 𝑁
total hosts) and 2 routers (𝑅1 and 𝑅2) between them. 9

3.1 The game model . 18
3.2 Goodput of the aggressive TCP player 26
3.3 Fairness Index . 26
3.4 Goodput of the aggressive TCP player 27
3.5 Prince-G Vs. MaxMin . 27
3.6 Average Goodput of the aggressive TCP players 28
3.7 Prince-G Vs. CHOKe . 28
3.8 Prince-A Vs. RED . 29
3.9 Goodput of the aggressive UDP player 29
3.10 Fairness Index . 30
3.11 Goodput of the standard UDP player 30
3.12 Goodput of the aggressive UDP player 31
3.13 Goodput of the aggressive TCP player 31
3.14 Normalized Fairness Index . 32
3.15 Efficiency of NE with TCP players 32
3.16 Efficiency of NE with UDP players 33
3.17 Prince-S with TCP synthesis . 34
3.18 Prince-S with UDP synthesis . 35
3.19 Prince-S with mixed synthesis . 35

4.1 The ADT’s structure. 43
4.2 Scenario 1. Performance of HL-HITTERS vs. direct counting

for different 𝑄 queue lengths and grouped based on operation
performed (counting or counting+querying) and on whether the
packet positions in the queue are tracked. Measured in mean
processing time per packet (shown in 𝜇s). The maximum time
taken by HL-HITTERS is 0.25𝜇𝑠. 51

xxiii

LIST OF FIGURES

4.3 Scenario 2. Performance of simple FIFO (no packet tracking)
vs. HL-HITTERS and direct counting implementing the Prince
policy. Results shown for different 𝑄 queue lengths and number
of flows as a function of the total sending rate of the flows vs. the
serving rate of the queue. Measured in mean processing time per
packet (shown in 𝜇s). The maximum time taken by HL-HITTERS
is 0.45𝜇𝑠. 53

4.4 Scenario 2. Measure of policy fairness for the simple FIFO and
the Prince policy. The ideal received throughput for both ag-
gressive and normal flows is 100% of their fair share. Here the
actual achieved throughput of the aggressive and normal flows
is displayed as a function of the total sending rate of the flows vs.
the serving rate of the queue. Measured in percent of fair share
achieved. For the Prince policy the aggressive flows achieve a
maximum of 143% of the fair share and the normal flows a mini-
mum of 95% of the fair share. 54

5.1 The network model with the flows, their packets, the router, and
the queue. 59

5.2 The state of a router queue in two successive rounds. In round t,
two trades take place; one between the packet pair (p1,p2) and
one between the pair (p4,p7). 59

5.3 Delays and Packet Values. 61
5.4 Delay of the business packet with respect to the queue size. . . . 71

6.1 Example packet utility functions. The point where the functions
meet the 𝑡 axis is 𝑡0. 77

6.2 Viewed as a service, PacketEconomy requires priority and avail-
able budget as inputs. Optionally, network and utility statistics
feedback can be used to deduce utility function parameters. . . 78

6.3 Overview of the operation of PacketEconomy. The PacketEcono-
my hook attaches and detaches the custom extension header at the
endpoints. State is maintained to be used in deciding which util-
ity function parameters and budget value to use. Routers perform
trades statelessly, directly rejecting pairs non-PacketEconomy
pairs. Feedback is sent from the receiving endpoint B to the
original sending endpoint A to inform its parameter selection. . 79

6.4 Graphical representation of OMNET++ module IPv6PE within
StandardHost6PE highlighted by a dashed frame. 82

xxiv

LIST OF FIGURES

6.5 Dumbbell network topology with 𝑁u�u�u� TCP flows (2 × 𝑁u�u�u� end-
points) and 𝑁u�u�u� UDP flows (2 × 𝑁u�u�u� endpoints) for a total of
𝑁 = 𝑁u�u�u� + 𝑁u�u�u� flows (2 × 𝑁 endpoints). All links are full du-
plex 10 Mbps with 50 ns propagation delay. 85

6.6 Overview of the experimental parameter combinations, produc-
ing the total number of experiments carried out. A total of 2150
combinations are examined. 90

6.7 Flow composition case combinations. Three flow type cases are
examined: TCP-only, UDP-only, and TCP & UDP flows. A total
of 10 combinations are examined. 90

6.8 Queue priority policy combinations. PacketEconomy is investi-
gated with different values for admission policy, spread, and 𝑐.
Also, five priority levels are examined to check whether the flows
have an incentive to participate in PacketEconomy. For DRR and
SP, the number of levels used is examined. A total of 43 combina-
tions are examined. 91

6.9 TCP-only flows case results per priority level with a DropTail
bottleneck router queue. Throughput increases with priority, as
expected, and two spread-𝑐 combinations distribute throughput
more aggressively than the other two. Packet drop is low (< 1%)
and approximately the same for all priority levels. 92

6.10 TCP-only flows case results per priority level with a RED bottle-
neck router queue. Throughput increases with priority, as with
DropTail, but it is distributed less aggressively. Packet drop is
low (< 2%) but slightly higher than with DropTail and approxi-
mately the same for all priority levels. 93

6.11 UDP-only flows case results for median end-to-end delay per pri-
ority level with a DropTail bottleneck router queue with 100%
bandwidth requirements. End-to-end delay decreases with prior-
ity, as expected, and two spread-𝑐 combinations distribute delay
more aggressively than the other two. Note: the 𝑦 axis is logarith-
mic. 94

6.12 UDP-only flows case results for median packet drop percentage
per priority level with a DropTail bottleneck router queue with
100% bandwidth requirements. Packet drop is between 7.5% and
2.5% decreasing as the number of flows decreases and as the size
of the payload increases. It is approximately the same for all
priority levels. 95

xxv

LIST OF FIGURES

6.13 UDP-only flows case results for median end-to-end delay per pri-
ority level with a RED bottleneck router queue with 100% band-
width requirements. End-to-end delay decreases with priority, as
expected, and two spread-𝑐 combinations distribute delay more
aggressively than the other two. Note: the 𝑦 axis is logarithmic. 96

6.14 UDP-only flows case results for median packet drop percentage
per priority level with a RED bottleneck router queue with 100%
bandwidth requirements. Packet drop is between 7.5% and 2.5%
decreasing as the number of flows decreases and as the size of the
payload increases. It is approximately the same for all priority
levels. 97

6.15 UDP-only flows case results for median packet drop percentage
per priority level with a DropTail bottleneck router queue with
150% bandwidth requirements. Packet drop is approximately
38% for all payload sizes. It is also approximately the same for
all priority levels. 98

6.16 TCP & UDP flows case results for median TCP throughput per
priority level with a DropTail bottleneck router queue. Through-
put increases with priority, as expected, but two spread-𝑐 combi-
nations distribute throughput less aggressively at high priority
values than the other two. 99

6.17 TCP & UDP flows case results for median TCP packet drop per-
centage per priority level with a DropTail bottleneck router queue.
Packet drop is between 0.5% and 2%, decreasing as the number of
UDP flows decreases and as the size of the UDP payload increases.
It is approximately the same for all priority levels. DRR/SP packet
drop percentage is very low, approximately 0.07%. 100

6.18 TCP & UDP flows case results for median TCP throughput per
priority level with a RED bottleneck router queue. Throughput
increases with priority, as with DropTail and the differences be-
tween spread-𝑐 combinations are diminished. 101

6.19 TCP & UDP flows case results for median UDP end-to-end delay
per priority level with a DropTail bottleneck router queue. Delay
decreases with priority, as expected, but two spread-𝑐 combina-
tions distribute delay more aggressively than the other two. Note:
the 𝑦 axis is logarithmic. 102

xxvi

LIST OF FIGURES

6.20 TCP & UDP flows case results for median UDP packet drop per-
centage per priority level with a DropTail bottleneck router queue.
Packet drop is between 0.8% and 2.5%, decreasing as the num-
ber of UDP flows decreases and as the size of the UDP payload
increases. It is approximately the same for all priority levels. DR-
R/SP packet drop percentage is very low, approximately 0.03%. 103

6.21 TCP-only flows case results per priority level for incentive to par-
ticipate as a percentage of total benefit gained when participating
versus not participating. In all cases it is over 100% and as a re-
sult there is always an incentive to participate in PacketEconomy.
Note: the 𝑦 axis is logarithmic. 104

6.22 UDP-only flows case results per priority level with a DropTail
bottleneck router queue with 100% bandwidth requirements. Dis-
played is the incentive to participate as a percentage of total ben-
efit gained when participating versus not participating. In all
cases it is over 100% and as a result there is always an incentive
to participate in PacketEconomy. Note: the 𝑦 axis is logarithmic. 105

6.23 UDP-only flows case results per priority level with a RED bot-
tleneck router queue with 100% bandwidth requirements. Dis-
played is the incentive to participate as a percentage of total ben-
efit gained when participating versus not participating. In all
cases it is over 100% and as a result there is always an incentive
to participate in PacketEconomy. Note: the 𝑦 axis is logarithmic. 106

6.24 TCP and UDP flows case results for TCP flows per priority level
with a RED bottleneck router queue with 240 bytes UDP payload
size and 60 UDP flows. Displayed is the incentive to participate
as a percentage of total benefit gained when participating versus
not participating. In most cases it is over 100%, but for some high
priority flows it falls below 100%. Note: the 𝑦 axis is logarithmic. 107

7.1 The game-theoretic model . 116
7.2 % of legitimate calls ((1 − 𝑝) ∗ 100) (function of 𝑢u� and 𝑢u� for the

𝑠u� value groups) . 136
7.3 Improvement (absolute difference) of % of legitimate calls with

CAPTCHA (SpitGame) vs. without CAPTCHA (SpitGame′) . . 139

xxvii

List of Tables

4.1 The HL-HITTERS Abstract Data Type 40
4.2 Computational Complexity . 50

7.1 Game-theoretic model utilities 118
7.2 Player preferences parameters . 120
7.3 The filter verdicts. 121
7.4 The strategy of Player I at a NE 123
7.5 The strategy of Player II at a NE 123
7.6 The coefficients for Equation 7.15 126
7.7 Boundary values of 𝑝 . 126
7.8 The NE of SpitGame and SpitGame′ (without CAPTCHAs). The

ranges of values for 𝑝2 in case 2.3 of SpitGame and 2.3 of SpitGame′

are given in Equations 7.34 and 7.36, respectively. 134
7.9 The experimental filter verdicts. 134
7.10 Solution exploration space . 135
7.11 Fitted functions for % of legitimate calls ((1 − 𝑝) ∗ 100) (function

of 𝑢u� and 𝑢u� for the 𝑠u� value groups) 137
7.12 Major findings from comparison of models with (SpitGame) and

without CAPTCHA (SpitGame′) in NE 138
7.13 Summary of actions used based on filter call identification and

the value 𝑠u� in the first filter specification case 140

8.1 Summary of mechanisms for the management of competitive
access to common resources. 144

xxix

CHAPTER 1

Introduction

The Internet is today a focal point of activity in modern societies. Commerce,
entertainment, government, education, human relations, and most other aspects
of human endeavour are regularly mediated by the Internet, which makes its
sustained operation of critical importance.

The Internet provides the infrastructure for multiple independent network
traffic flows. This infrastructure and its resources are limited and shared between
these flows, each of which attempts to optimize its own performance. As a result
of entities sharing a limited common resource, with individual optimization
targets, competition arises between these flows.

Without any central authority to regulate its operation, the available network
resources of the Internet are allocated by independent routers to the flows in
a decentralized manner. Internet flows may submit at any time an arbitrary
amount of packets to the network and then adjust their packet rate with an
appropriate flow control algorithm, like the AIMD-based algorithms for TCP-
flows. The apparent lack of coordination between the independent flows leads
the Internet to an “anarchic” way of operation.

In general, services which are provided to users have finite capacity, the
consumption of which leads to increasing network congestion, a major issue
on the Internet. Under congestion, networks struggle to allocate resources
efficiently and fairly. Congestion builds up easily when some of the flows try to
gain a large share of the network capacity, either by excessively increasing their
sending rate or by not cutting back despite their packet losses. This situation, in
which multiple selfish players can ultimately overload a shared resource even
when it is obvious that it is not in anyone’s long term interest, is an instance of
the “Tragedy of the Commons” problem [41]. This behaviour leads to heavy
congestion and threatens the stability and efficiency of the Internet.

1

Beyond these consequences, our greatest concern is the unfairness that arises.
During congestion, misbehaving flows may retain their sending rate while
well-behaved ones cut back. The result is that the misbehaving flows receive an
unfair proportion of the throughput at the expense of the well-behaved flows.

Viewing the Internet as a service to its competing users, some of the high-
level requirements which it has to satisfy are:

• Fairness The allocation of resources to the users requesting them must be
fair, for a given definition of fair. Fairness may mean receiving the same
resources, guaranteeing a minimum amount of resources, receiving re-
sources proportional to a user property or distributing the resources in
any other way which makes sense in the context of the service.

• Flexibility The provision of the resources should be flexible enough so that
all useful ways of distributing the resources should be supportable.

• Control Users should be able to affect or even control the distribution of the
resources, in a way that does not completely override other users’ ability
to do the same.

• Efficiency Any service provided will have to process large amounts of re-
quests from users, and thus high efficiency is not just a feature but a
fundamental requirement.

These requirements are fulfilled by Quality of Service (QoS) mechanisms on
networks and have been the subject of intensive research.

The fact that the problem consists of independent and selfish flows which
compete for Internet network resources leads to its suitability for analysis with
concepts and tools from algorithmic game theory. In these terms, network flows
are selfish and independent players, the router’s queueing algorithm is the
game mechanism, the players’ service request characteristics constitute the set
of possible strategies and the allocated resources is the players’ utility.

Achieving fairness and efficiency in the network can be translated to achiev-
ing a desirable Nash Equilibrium (NE) in the game theoretic model. In order to
accomplish this goal we turn to mechanism design, through which we construct
algorithms that incentivise the flows to select strategies in such a way that the
resulting resource allocation distribution possesses the desirable characteristics.
The overall novelty of this work is the application of game theoretic tools to
create incentives in a real network in order to implement Quality of Service
for the network flow players, while at the same time employing lightweight
mechanisms on the routers.

2

Chapter 1: Introduction

1.1 Methodology

In this work, we aim to solve problems concerning the distribution of common
resources to independent actors. Due to the nature of the problems, a game-
theoretic approach is broadly applicable to analyse them and to propose solu-
tions. The methodology used in this work follows a common theme. We initially
study the problem with theoretical tools and then we follow up with experi-
mental implementations, employing the theoretical results to devise practical
solutions for the problem.

After selecting the problem to be addressed we examine how it can be mod-
elled using game theory. As a part of the game-theoretic modelling process we
first determine the aspects the problem consists of and identify the fundamen-
tal ones amongst them. This process establishes the players in the game, their
preferences and the way these are expressed through the players’ pay-off func-
tions, as well as the actions the players have at their disposal. We then create
a game-theoretic model which captures as many of the fundamental aspects
of the problem as possible. This prioritisation aims to allow our model to be a
reasonably faithful representation of the original problem whilst simple enough
to be studied analytically.

After the basic model is defined, we perform an initial theoretical analysis to
verify that our attempt to capture the problem is sound. In parallel, we imple-
ment a simple experimental version of the model and we evaluate it in order to
verify that the model is an approximate proxy for the original problem. If either
the theoretical or the experimental analysis expose inconsistencies or a large
divergence from the original problem, we repeat the modelling and analysis
processes amending the model until it exhibits the appropriate behaviour.

Once the theoretical model is complete, we perform further theoretical and
experimental analysis, in order to converge on a solution of the problem. This
often requires a second and more realistic implementation which solves any
remaining issues regarding efficiency, performance, generality, or flexibility.
After all the results are obtained, they are analysed to extract patterns and to
reveal general insights.

3

1.2 Synopsis of Results

1.2 Synopsis of Results
During the this PhD research, the following shared resource management solu-
tions were implemented.

1. Prince: An active queue management policy resembling MaxMin fairness
for throughput by protecting the fair share of well-behaved flows.

• Joint work. Contribution of this PhD research: Participation in the
research, resulting in the creation and selection of the variants of the
algorithm used. Participation in performing the experiments and the
interpretation of the results.

2. HL-Hitters: A heaviest hitters limiting mechanism with O(1) time com-
plexity for sliding-window data streams.

• Core work of this PhD research.

3. PacketEconomy theoretical model: a network economy in which the appli-
cation of the common economic tool of money allows the coordination of
network packets in order to self-regulate access to network resources.

• Joint work. Contribution of this PhD research: Participation in the
research, resulting in the creation of the theoretical model. Imple-
mentation of the experiments and the analysis of the results.

4. PacketEconomy adaptation to OMNET++: Examination how quality of
service (QoS) can be achieved in a real network by allowing packets to co-
ordinate using fiat money in a market economy for router queue positions.

• Core work of this PhD research.

5. SpitGame: A game-theoretic analysis of preventing spam over Internet
Telephony via audio CAPTCHA-based authentication.

• Joint work. Contribution of this PhD research: Participation in the
research, resulting in the creation and selection of game-theoretic
model of the problem. Implementation of the experiments and anal-
ysis of the results.

4

Chapter 1: Introduction

1.3 Overview of the Thesis

Chapter 2: Background
The main concepts which underpin the solutions proposed in this work are
presented in this chapter. The aspects of the subjects of network structure,
network flow type, quality of service, router queue management mechanisms as
well as game-theoretic modelling that are relevant to this thesis are discussed.

Chapter 3: Prince: an Effective Router Mechanism for Networks with Selfish
Flows
Starting from the premise that modern routers are not protected from aggres-
sive and unresponsive flows, we define a new, almost stateless, active queue
management scheme, called Prince. The basic idea is to protect the fair share of
well-behaved flows. We adopt a game theoretic view, where incentive is given
to the majority flow by dropping its packets at congestion. In order to find the
majority flow, we focus on the queue of the router and detect the flow with the
most packets in it. From a game-theoretic point of view, Prince manages to track
and bound aggressive flows and favour socially responsible ones. Our results
show that in this context Prince resembles MaxMin Fairness allocation. Finally,
we also examine a streaming version of the algorithm that can be fine-tuned to
any desired performance/accuracy trade-off point.

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time Complex-
ity for Sliding-window Data Streams
In this work we address the problem of identifying and limiting the heaviest
hitters in a sliding-window data stream. We propose the first, to our knowledge,
exact (i.e., not approximate) algorithm which achieves O(1) with high probabil-
ity time complexity in both update and query operations. Additionally, it tracks
the first and last item of any itemset in the window in O(1) time complexity as
well as the lightest hitters with no additional computational costs. These prop-
erties allow us to efficiently implement a mechanism to limit the heaviest hitters
by evicting them from or not allowing them in the window. We describe the
algorithms and data structure which implement this functionality, we explain
how they can be used to accomplish the goal of limiting the heaviest hitters and
perform experiments to produce quantitative results to support our theoretical
arguments.

5

1.3 Overview of the Thesis

Chapter 5: On Money as a Means of Coordination between Network Packets
In this work, we apply a common economic tool, namely money, to coordinate
network packets. In particular, we present PacketEconomy, a network economy
where each flow is modelled as a population of rational network packets, and
these packets can self-regulate their access to network resources by mutually
trading their positions in router queues. We consider a corresponding Markov
model of trade and show that there are Nash equilibria (NE) where queue
positions and money are exchanged directly between the network packets. This
simple approach, interestingly, delivers significant improvements for packets
and routers.

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS in
OMNET++
In this work we examine how quality of service (QoS) can be achieved in a real
network by allowing packets to coordinate using fiat money in a market econ-
omy for router queue positions. In this context we implement and evaluate the
PacketEconomy mechanism in the discrete-event simulator OMNET++, using
the standard INET library for simulating IPv6 networks and evaluate through-
put, end-to-end delay and packet drop rates. Additionally, we examine whether
the flows have a game theoretic incentive to participate in the market economy,
while covering both TCP- and UDP-based flows in multiple different cases. The
mechanism achieves QoS by allowing packets with different QoS requirements
waiting to be served in router queues to mutually trade positions by exchang-
ing money. Notably, each flow can independently and selfishly define the ask
and bid prices of its packets. In this manner, packets can coordinate in order
to self-regulate their packet-specific access to shared network resources. The
results are promising and show that the innovative PacketEconomy mechanism
provides robust, effective and fine-grained QoS while maintaining end-user
control for both rate- and window-based flows.

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet Tele-
phony via Audio CAPTCHA-based Authentication
Spam over Internet Telephony (SPIT) is a potential source of disruption in Voice
over IP (VoIP) systems. The use of anti-SPIT mechanisms, such as filters and
audio CAPTCHA (Completely Automated Public Turing Test to Tell Computer
and Humans Apart) can prevent unsolicited calls and lead to less unwanted
traffic. In this work, we present a game-theoretic model, in which the game is
played between SPIT senders and Internet telephony users. The game includes
call filters and audio CAPTCHA, so as to classify incoming calls as legitimate

6

Chapter 1: Introduction

or malicious. We show how the resulting model can be used to decide upon
the trade-offs present in this problem and help us predict the SPIT sender’s
behaviour. We also highlight the advantages in terms of SPIT call reduction of
merely introducing CAPTCHA, and provide experimental verification of our
results.

Chapter 8: Conclusions and Directions
The overall conclusions of this work are presented in this chapter. A brief com-
parison of the component works in this thesis is conducted and the challenges
and possible future directions regarding the field are discussed.

7

CHAPTER 2

Background

2.1 Networking
This thesis is concerned with the problem of resource allocation on networks.
The specific network topics of interest include the structure of the networks
used for modelling and experimental evaluation, the types of network flows
transmitted over the networks, and the router queue management policies. In
the following sections brief descriptions of these topics are presented, while
more details can be found in [87, 102].

Figure 2.1: Structure of a dumbbell network with 𝑁 hosts on each side (2 ∗ 𝑁
total hosts) and 2 routers (𝑅1 and 𝑅2) between them.

9

2.1 Networking

2.1.1 Network Structure
The network structure we commonly consider consists of a dumbbell topology,
illustrated in Figure 2.1, with 𝑁 hosts on each side (2∗𝑁 total hosts) and 2 routers
(𝑅1 and 𝑅2) between them. The hosts on the left are the sending endpoints
and the hosts on the right are the receiving endpoints. Each host is connected
via Ethernet with exactly one link to either 𝑅1 or 𝑅2. The connections between
endpoints and routers, as well as the single connection between the two routers,
are typically full duplex and have the same bandwidth and propagation delay.
This structure captures the basic components of any network (multiple hosts,
flows, and routers) as well as typically leads to network congestion, a important
phenomenon commonly studied. At the same time, the structure is simple and
regular enough for some analytic modelling to be performed while experimental
results are reasonably generalisable to more complex networks.

2.1.2 Network Flow Types
The network flow types represented in this work are either window-based or
rate-based. These two categories cover a wide range of flows and as a result are
good proxies for real Internet traffic.

2.1.2.1 Window-based Flows
Window-based flows employ a feedback-based mechanism, the congestion win-
dow, which determines the maximum number of packets that the flow may have
in-flight (i.e. being in transmission anywhere in the network). Every packet that
is in-flight occupies one of the available positions in the congestion window
of a window-based flow. The more a packet delays its arrival, the longer the
following packet will have to wait to use the occupied window position.

Most window-based flows are implemented with the Transmission Control
Protocol (TCP), which belongs to the Internet protocol suite and is the main
reliable connection-oriented data transmission protocol of the Internet. TCP
flows transmit their data by sending a series of packets. Assume a TCP flow
that is ready to send a large volume of data as a sequence of packets. In order
to send the data in a controlled manner, a first parameter 𝑤 is used, called the
size of the congestion window.

The TCP protocol dictates that the flow starts by submitting 𝑤 packets to the
network and then waits until one of two conditions are met: Either a packet’s
arrival is confirmed, normally by receiving a matching acknowledgement packet
(ACK) within a certain time-frame, or the time-frame passes, whereby the packet
is considered lost. As soon as the number of the in-flight packets of the flow is

10

Chapter 2: Background

less than 𝑤, the flow submits new packet(s); the result is that, at any moment
in time, the flow can have at most 𝑤 packets in flight. Thus, the size 𝑤 of the
congestion window has a strong impact on the transmission rate of a flow [42].
Consequently, the selection of an appropriate value for 𝑤 is a very critical task
for every flow, and this is where the AIMD (Additive Increase Multiplicative
Decrease) scheme is useful.

The AIMD algorithm is the most popular procedure for a TCP flow to con-
stantly adapt its window size to the changing network conditions. The basic
principle of AIMD is that, for each successful packet delivery the flow increases
its congestion window size additively by an amount proportional to a parameter
𝛼 > 0 (usually 𝛼 = 1) and for each lost packet, the flow decreases its congestion
window multiplicatively by a parameter 0 ≤ 𝛽 < 1 (usually 𝛽 = 1/2). The val-
ues of the 𝛼 and 𝛽 parameters have a decisive role on the behaviour of the AIMD
flow. A large value of 𝛼 and/or 𝛽 makes the flow more aggressive, whereas a
small value makes it more temperate.

2.1.2.2 Rate-based Flows
Rate-based flows are simpler than window-based ones. Their operation is
governed by the sending rate of the packets which is typically (almost) constant.
These flows employ no feedback mechanism to control their sending rate and
as a result they are also labelled unresponsive flows, since there is no way to
signal to them that they should alter their sending rate depending on network
conditions.

The protocol most commonly used for rate-based flows is the User Datagram
Protocol (UDP), which, as TCP, belongs to the Internet protocol suite. Its main
advantages in comparison to the TCP protocol is the lower overhead of the
protocol headers (8 bytes for UDP versus 20 bytes for TCP) as well as being
much simpler to implement due to the lack of feedback mechanism and reliable
delivery guarantees.

2.1.3 Router Queue Management
Hardware-based routers fall into two large categories based on their maximum
throughput: High-end routers and medium/low-end routers. High-end routers
are typically employed in backbone networks and thus need to support ex-
tremely high throughput. To achieve this, they employ fixed-function dedicated
and highly parallel hardware computation units (Network Processing Units -
NPU) as well as specialized high-speed memory (Ternary Content Addressable
Memory - TCAM). However, this comes at the cost of flexibility and customis-
ability, as the algorithms which can be used by the router while maintaining

11

2.1 Networking

its high-speed processing are predetermined and implemented into hardware.
Some parameters may be configurable but only to the extent predetermined by
the manufacturer. Often, for the target applications these limitations may not
be a problem, since backbone routers often do not have enough context in order
to make flow-dependant routing choices. For example, one limitation which
affects our system as well, is that it is impossible to perform packet re-ordering
within the queue (the queue is strictly FIFO). If higher flexibility is desired, it is
possible in many cases to use custom algorithms within these routers, however
this is done at the expense of bypassing a part of the hardware-based pipeline
through a software-based one. The immediate effect is that throughput drops
significantly.

While these trade-offs have to do with high-end backbone routers, lower-cost
middle- and low-end routers, which do not need to provide the same throughput
since they are typically used near the leaves of the network, largely do away
with the specialized and costly hardware implementation and use a software
pipeline. As a result, it is much easier to implement custom algorithms on this
class of routers.

Router queue algorithms can be classified according to their computational
requirements. On one hand, there are stateless algorithms, which are lightweight
and simple. Typical queue admission policies include DropTail and RED (Ran-
dom Early Detection) [31]. The handicap of DropTail is its indiscriminate packet
dropping mechanism, which causes unfairness. RED notifies more flows about
congestion than DropTail by deploying a randomized dropping mechanism.
RED also constrains the queue length between two thresholds in order to pre-
vent overflow and high queueing delay.

On the other hand, there are stateful queueing policies, like Fair Queue-
ing [19], which are sometimes too computationally demanding to be deployed
at routers. Fair Queueing accomplishes the desired result (fairness) but at the
cost of a separate queue for each flow and increased management complex-
ity. In response, a variety of buffer management schemes were proposed that
maintain a FIFO queue while trying to fairly allocate bandwidth. For example,
Core-stateless Fair Queuing (CSFQ) [103] does not need to maintain state on
core routers but it has to on the edge routers. Its disadvantage is that the archi-
tecture of the Internet has to be modified to allow routers to exchange messages
relaying the flows’ rate estimations. Other queueing policies use the history
of packet drops (e.g. RED-PD [66]) or the history of the incoming packets (e.g.
AFD [83]) to detect the aggressive flows. While these policies do not keep sep-
arate queues for each flow, they still require complex computations and extra
buffering operations.

CHOKe [84] is based on the assumption that the queue content during con-
gestion constitutes a sufficient statistic about the incoming traffic and provides

12

Chapter 2: Background

useful information about candidate flows for pruning. CHOKe penalises flows
that overcome their fair share by deploying a probabilistic algorithm. Every
incoming packet is compared with an already queued packet and if they match
they are both dropped. The performance of this algorithm is good when only
one misbehaving flow is traversing the router but degrades when more than
one flow is aggressive.

2.2 Game Theory
A game is a mathematical model of the interaction among rational, mutually
aware players. In this thesis we generally consider that players are selfish,
strategic, and rational by having the objective to maximize their own pay-off.
The pay-off of each player is determined by the outcome of the game, which in
turn depends on the decisions (strategies) of all players. A strategy defines a set
of moves or actions a player will follow in a given game.

A mixed strategy is a randomized strategy that assigns a probability to each
pure strategy. The support of a mixed strategy is the set of actions to which it
assigns a strictly positive probability. A strategy profile is a set of strategies that
includes one and only one strategy for every player. Clearly, a strategy profile
fully specifies a single execution of a game. A Nash equilibrium is a strategy
profile were no player has an incentive to unilaterally deviate from their strategy.

We also refer to the concept of a weak Pareto improvement, which (in this
context) is any change to the current strategy profile that makes every player at
least as well off and at least one player strictly better off. For more details on
the game-theoretic terms, the reader may refer to textbooks on Game Theory
[80][79][81], or to a recent volume on Algorithmic Game Theory [77].

2.3 Related Work
In this work we address the fair and balanced distribution of resources (and
in this case specifically network resources) to competing entities. In this field,
network congestion has been described game-theoretically by Nagle [73] and
the solution put forth used a market wherein the rules of the game would lead
to the optimal strategy for the individual entities also being the optimal solution
for the system. In a later work, Shenker [93] describes the relation between the
selfish entities and the switch service mechanisms and proposes a method of
guaranteeing efficient and fair operating points. Since then, the coordination
of Internet entities has been modelled through various game definitions, some
representative ones being [3, 85, 57] and overviews of which are presented in

13

2.3 Related Work

[4, 77].
Certain game-theoretic approaches to congestion problems of the Internet,

and especially the TCP/IP protocol suite, are discussed in [93, 3, 32, 25]. A
combinatorial perspective on Internet congestion problems is given in [48].
The focus of the above works and the present work is on sharing the network
resources between selfish flows.

The use of economic tools like pricing, tolls and taxes as a means to regulate
the operation of networks and/or to support quality of service (QoS) function-
alities in the presence of selfish flows is discussed in [78, 33, 16, 15, 65, 69]. In
particular, the Paris Metro Pricing approach, using pricing to manage traffic in
the Paris Metro, is adapted to computer networks in [78]. A smart market for
buying priority in congested routers is presented in [65]. In [16, 15] taxes are
used to influence the behaviour of selfish flows in a different network model.
An important issue identified in [15] is that taxes may cause disutility to net-
work users unless the collected taxes can be feasibly returned to the users.

In their seminal work, Kiyotaki and Wright [55] examine the emergence of
money as a medium of exchange in barter economies. Subsequently, Gintis [34,
35] generalizes the Kiyotaki-Wright model by combining Markov chain theory
and game theory.

14

CHAPTER 3

Prince: an Effective Router
Mechanism for Networks with

Selfish Flows

3.1 Introduction
Network congestion is a major issue on the Internet. Under congestion, networks
struggle to allocate resources efficiently and fairly. Congestion builds up easily
when some of the flows try to gain a large share of the network capacity, either
by excessively increasing their sending rate or by not cutting back despite their
packet losses. This situation, in which multiple selfish players can ultimately
overload a shared resource even when it is obvious that it is not in anyone’s long
term interest, is an instance of the “Tragedy of the Commons” problem [41]. This
behaviour leads to heavy congestion and threatens the stability and efficiency
of the Internet.

Beyond these consequences, our greatest concern is the unfairness that arises.
During congestion, misbehaving flows may retain their sending rate while
well-behaved ones cut back. The result is that the misbehaving flows receive an
unfair proportion of the bandwidth at the expense of the well-behaved flows.
In this work, a game theoretic point of view is adopted. In these terms, network
flows are selfish and independent players, the router’s queueing algorithm is the
game mechanism, the players’ bandwidth requests constitute the set of possible
strategies and the allocated bandwidth is the players’ utility.

Achieving fairness and efficiency in the network can be translated to achiev-
ing a desirable Nash Equilibrium (NE) in the game theoretic model. In order to

15

3.2 Related Work

accomplish this goal we turn to mechanism design. We opt not to try to control
the flows but to give them incentives to act responsibly [85, 93]. We use the core
elements of a network, the routers, to warn or diminish selfish flows. In a previ-
ous work [25], we analysed the Prince algorithm in an abstract network-game
model and obtained interesting results. In this work, we adapt Prince to a realis-
tic Internet-centric model. Our basic principle is to ground the packet dropping
decisions on the buffer contents. In particular, at every congestion, a packet
from a flow with the largest number of packets in the buffer, i.e. a majority flow,
is dropped. We present three versions of Prince: Prince-G precisely implements
the basic principle, Prince-S is a more vindictive instance of the basic principle
and Prince-A approximates Prince-G with a data stream algorithm.

The novelty of this work is the application of game theoretic incentives in
a real network in order to accomplish fairness among the players, while at the
same time employing a lightweight mechanism on the routers. The mechanism
is a new active queue management scheme which resembles MaxMin fairness by
protecting the fair share of well-behaved flows. We do not achieve this by trying
to implement a strict instance of MaxMin by continuously controlling every flow.
Rather, and this is our innovation, we apply either moderate (Prince-G) or strong
(Prince-S) incentives to the aggressive player who stresses the router most during
congestion. This will force any rational player to back off in order to avoid further
detriment to his utility. We study Prince and provide theoretical arguments and
extensive experimental results. For the latter, we experimented with TCP, UDP
and mixed TCP and UDP flows of varying aggressiveness and we compared
Prince against other popular queueing policies such as DropTail, RED, CHOKe
and MaxMin. Additionally, we propose a low complexity approximation of
Prince to allow for an almost stateless router implementation.

3.2 Related Work
Nagle [73] proposed a game-theoretic view of network congestion and suggested
a market solution according to which the rules of the game should be set in
such a way, so that the optimal strategy for the individual user results in an
optimal situation for all users. Shenker [93] correlates the selfish behaviour of the
users with the design of the switch service disciplines and suggests a fair share
scheme which guarantees efficient and fair operating points. Other researchers
also tried to model the interaction between Internet users with various game
definitions [3, 25, 85, 93] and emphasized the importance of mechanism design
in this process.

Router queue algorithms can be classified according to their computational
requirements. On the one hand, there are stateless algorithms, which are

16

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

lightweight and simple. For similar games to ours, it has been proven that Drop-
Tail or RED routers lead to undesirable NE when modern TCP flows (e.g. SACK)
participate [3, 24]. The handicap of DropTail is its indiscriminate packet drop-
ping mechanism, which causes unfairness. RED [31] notifies more flows about
congestion than DropTail by deploying a randomized dropping mechanism.
RED also constrains the queue length between two thresholds in order to pre-
vent overflow and high queueing delay. The drawback is that RED imposes
the same loss rate for all flows, therefore a flow has no incentive to be socially
responsible.

On the other hand, there are stateful queueing policies, like Fair Queue-
ing [19], which are too computationally demanding to be deployed at routers.
Fair Queueing accomplishes the desired result (fairness) but at the cost of a sep-
arate queue for each flow and increased management complexity. In response,
a variety of buffer management schemes were proposed that maintain a FIFO
queue while trying to fairly allocate bandwidth. For example, CSFQ [103] does
not need to maintain state on core routers but it has to on the edge routers. Its
disadvantage is that the architecture of the Internet has to be modified to allow
routers to exchange messages relaying the flows’ rate estimations. Other queue-
ing policies use the history of packet drops (e.g. RED-PD [66]) or the history of
the incoming packets (e.g. AFD [83]) to detect the aggressive flows. While these
policies do not keep separate queues for each flow, they still require complex
computations and extra buffering operations.

CHOKe [84] is based on the assumption that the queue content during con-
gestion constitutes a sufficient statistic about the incoming traffic and provides
useful information about candidate flows for pruning. CHOKe penalizes flows
that overcome their fair share by deploying a probabilistic algorithm. Every
incoming packet is compared with an already queued packet and if they match
they are both dropped. The performance of this algorithm is good when only
one misbehaving flow is traversing the router but degrades when more than one
flow is aggressive. Another approach was also based on the same queue man-
agement guidelines and a game theoretic model [32]. Despite that it also aims
at the highest rate flow, it requires delicate refinement of the in-between queue
thresholds. Additionally, its dropping policy does not shield the fair share when
the queue usage is above the predefined high threshold.

3.3 The Prince Algorithms
As already stated, our goal was to design a game mechanism for the network
which provides incentives to the flows to behave in a socially responsible manner.
The design criteria we used for the mechanism should:

17

3.3 The Prince Algorithms

Figure 3.1: The game model

• Lead the game towards a desirable NE

• Provide a stateless and simple implementation.

• Not depend on being deployed on the whole network.

Based upon our criteria, we propose the Prince mechanism, which uses the
router queue and focuses on the majority flow in it, i.e., the flow with the most
packets.

Our algorithms work on a FIFO router queue and drop packets only during
congestion. We define three implementations with different trade-offs:

• Prince-G (Gentle) drops a packet from the majority flow whenever a packet
drop is required.

• Prince-S (Severe) marks all the majority flow’s packets and drops one of
the marked packets whenever a packet drop is required.

• Prince-A (Adaptive) emulates Prince-G with a data stream algorithm
adapted from [49].

3.3.1 Theoretical Arguments
We will introduce a simple but concise game definition in order to specify the
model under analysis. The game that represents the interaction between the
flows and the Internet infrastructure (Figure 3.1) is the following:

• The 𝑛 players of the game are the flows that compete for the common
resource (link capacity).

• The moves available to each player are:

– set the AIMD parameters (𝛼,𝛽) for TCP flows,

18

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

– set the constant sending rate for UDP flows.

• The mechanism of the game is the router’s packet dropping protocol.

• The goal of each player is to maximize their utility function (e.g. maximizing
goodput).

• The solution concept of the game is the Nash Equilibrium.

A desirable NE for the above game is characterized by efficiency and fair band-
width allocation. While fairness can be defined in multiple ways, we consider
the MaxMin Fairness criterion [19] to be the most appropriate for our model.
According to MaxMin, a set of rates is fair if no rate can be increased without
simultaneously decreasing another, smaller, rate. MaxMin Fairness results in
an equal share of the bottleneck link for each flow traversing it [51] unless a
flow requests less than its fair share. In this case, the frugal flow receives the
bandwidth it requested, and the remaining capacity is distributed equally to
the more greedy flows.

The Prince algorithm attempts to protect the fair share of each player in
the game. In essence, the Prince-G algorithm resembles the MaxMin Fairness
bandwidth allocation by minimizing the majority flow’s sending window and
sharing the released bandwidth with the rest of the players. Every time a new
packet arrives at the queue the Prince-G algorithm is triggered. If the queue
is full, then a decision has to be made on which flow’s packet to drop. As the
following lemma shows, Prince and MaxMin both decide on a flow with the
maximum number of packets.

Lemma 1 The Prince-G policy implements MaxMin Fairness for buffer sharing.

Proof 1 Assume a Prince-G router with queue size 𝐶 and a set of 𝑛 flows. Assume
that the queue is full and that a new packet has just arrived at the router. Hence, a total
number of 𝐶 + 1 packets are currently at the router. Let 𝑤1, 𝑤2, … , 𝑤u� be the number
of packets that belong to flows 1, 2, … , 𝑛, respectively. Without loss of generality we can
assume that

𝑤1 ≤ 𝑤2 ≤ … ≤ 𝑤u� . (3.1)

The Prince-G policy will drop a packet from the flow 𝑛 with the largest number of
packets in the queue (ties are solved randomly). This way Prince-G implements the
MaxMin criterion.

Lemma 2 In both of the Prince-G and Prince-S policies, a flow that did not exceed its
fair share in the queue buffer, does not lose any packet. Furthermore, in Prince-G, a flow
is never forced to have a buffer share smaller than its fair share.

19

3.3 The Prince Algorithms

Proof 2 As in Lemma 1 assume a router with queue size 𝐶 and a set of 𝑛 flows. A
new packet has just arrived while the queue is full. Let 𝑤1, 𝑤2, … , 𝑤u� be the number of
packets that belong to flows 1, 2, … , 𝑛, respectively, and assume relation 3.1 holds.

By combining relation 3.1 with
u�

∑
u�=1

𝑤u� = 𝐶 + 1 , (3.2)

we can show by contradiction that the number of packets of flow 𝑛 is 𝑤u� > 𝐶/𝑛. Clearly,
if 𝑤u� ≤ 𝐶/𝑛 then ∑u�

u�=1 𝑤u� ≤ 𝑛 ⋅ (𝐶/𝑛) = 𝐶 < 𝐶 + 1, a contradiction.
We conclude that in both Prince-G and Prince-S, a flow that has not exceeded its

fair share cannot experience packet drops. Furthermore, since Prince-G identifies a flow
with the maximum number of packets each time a packet has to be dropped, a flow is
never pushed strictly below its fair share.

We consider the above lemmas to be evidence that our algorithms and
especially Prince-G lead the game to desirable NE. Further evidence is provided
by the experimental results in Section 3.5.

3.3.2 Algorithm Descriptions
We examine three algorithms that embody the basic principle of Prince, i.e.,
dropping packets from the majority flow. All three algorithms operate by drop-
ping packets when the router experiences congestion, that is, when the router
queue is full and another packet arrives for which there is no more space. The
algorithms are differentiated by the way they select which packet to drop under
such circumstances. We consider a router queue with 𝐶 packets and 𝑛 unique
flows.

Prince-G
The Prince-G algorithm scans the queue and counts the packets of each flow
whenever a packet needs to be dropped. Then it drops the first1 packet in the
buffer of the most frequent flow, making space for the new packet to enter the
queue. If the new packet belongs to the most frequent flow in the queue, then
only this packet is dropped immediately.

Complexity
Building the list of frequencies per flow can be achieved in 𝑂(𝐶) amortized time,
by using a single pass over the queue and accumulating the counts in a hash-
table-based dictionary (key:flowid, value:packet count). This time complexity

1to quickly alert the flow about congestion

20

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

can be improved to 𝑂(1) worst case with high probability if one of the hashing
algorithms of [20] or [7] is used. The most frequent flow can be identified within
the same process. The required space is Θ(min{𝐶, 𝑛}).

Prince-S
The Prince-S algorithm retains a list of marked packets which are candidates
for being dropped. To create the list, we execute once what is essentially a two-
pass Prince-G algorithm resulting in all of the majority flow’s packets being
marked (one pass to find the majority flow as in Prince-G, one pass to mark all
the majority flow’s packets). If the queue experiences congestion and there are
no marked packets in the queue, the list is created on-demand and then the first
marked packet is selected immediately for dropping. On the other hand, if the
list already contains marked packets then the marking process is not executed
and the next marked packet in the list is dropped.

Complexity
Building the list of frequencies per flow is achieved in the same 𝑂(𝐶) time as
Prince-G. The marking of the most frequent flow’s packets, 𝑤u�u�u� in number,
can be stored in a linked list in time 𝑂(𝐶) and in space Θ(𝑤u�u�u�). Dropping a
marked packet can be achieved in 𝑂(1) time.

Prince-A
Prince-A is the window-based adaptation of the data stream algorithm of
Karp et al. [49]. The data stream technique identifies the top-k heavy hitters
in order to approximately spot the majority flow while being as lightweight as
possible at the same time. Prince-A uses only a limited number of counters (k)
which is significantly less than the queue capacity. The purpose is to implement
the Prince algorithm with less computational resources.

When a new packet arrives, irrespective of congestion, the original algorithm
is executed and the flow who sent the packet may or may not get a counter. More
precisely, the router examines if the flow that the incoming packet belongs has
already a counter. If it already has a counter then this counter is incremented
by one. If it doesn’t, first checks if there is an empty counter to correlate it with
the current flow or else decrements all counters by one.

The adaptation consists of triggering when a packet is either served or drop-
ped. In these cases, if the packet’s flow had a counter associated with it, its
value is decremented by one. This function allows fast adaptation to changing
network conditions.

21

3.4 Discussion

Complexity
The more complex implementation for storing the counts, also proposed in [49]
is used, allowing for 𝑂(1) worst case with high probability time complexity
when a packet arrives. Space complexity in this implementation is Θ(1/𝜃 + 𝑐),
where c is the largest frequency and 1/𝜃 is the maximum number of counters
used. Both have a small upper bound: 𝑐, 1/𝜃 ≤ min{𝐶, 𝑛}. When a packet is
served or dropped, the time complexity is the same 𝑂(1) as when one arrives.

Additionally, if one is willing to trade space complexity for time complexity, it
is possible to substitute the approximate Prince-A algorithm with HL-HITTERS,
an exact 𝑂(1) worst case with high probability time and 𝑂(𝐶) space complexity
algorithm for finding the heaviest-𝑘 hitters described in Chapter 4.

3.3.3 Effects of the Packet Size Assumption
In this work, we have focused on scenarios with packets of equal size and showed
that Prince handles them very well. Indeed, the case of packets with different
packet sizes is very important for network routers. In brief, the Prince-G and
Prince-S algorithms can be adapted to count the total size of the packets of each
flow and then drop one or more packets from the majority (in bytes) flow. For
Prince-A this approach does not apply. However, we can still handle packets of
various sizes by exploiting the fact that the size of IP packets does not vary more
than a constant factor. Thus, for Prince-A we can consider a minimum packet
size (mps) and handle any larger packet as being k minimum packets for some
appropriate integer k. The data structure of HL-HITTERS can continuously
monitor the majority flow in a router queue with a time complexity of 𝑂(1)
worst case with high probability per packet. This data structure can also be
adapted to packets of variable size with the same trick as above in Prince-A.

3.4 Discussion
The Prince mechanism embodies the following fundamental game theoretic
principle. At the moment of congestion, we drop packets from the player who
contributes the most to the congestion. As a result, his utility diminishes if he
continues to be aggressive. This is a strong incentive for a selfish but rational
player to back off, when he wants to maximize his utility function, even if packet
loss has a minor cost for him. At the same time, Prince ensures that well-behaved
players receive appropriate service. The power of this technique lies in that
we need only target the most aggressive player to motivate all the players to
behave well. Even though all players desire the largest possible proportion of

22

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

the link capacity, no one will want to have the maximum share because of the
penalty. Since it is not possible for a player to find out the shares of the other
players, he will have to be careful not to request too much bandwidth in order
not to become the most aggressive one. The result is that the players restrain
themselves to avoid the penalty, until no congestion is present.

We should note that both Prince-G and Prince-S are motivated by the same
principle, i.e. punishing the most aggressive player, but they accomplish this
using different means and have slightly different results. Arguably, Prince-S is
the most “vengeful” of the two. It will invariably provide the strongest incentive
to moderate aggressiveness, at the expense of being less sensitive to majority
flow fluctuations due to the lag between majority flow re-evaluations. It will
also be more computationally lightweight, on average, than Prince-G.

The Prince algorithms presented in this work implement work-preserving
queue disciplines that drop packets from the router queue only in case of over-
flows and, even then, the minimum possible number of packets is dropped.
When there is no overflow, every flow is granted the buffer capacity it requests.
During overflows, the Prince algorithms implement (Prince-G) or approximate
(Prince-S, Prince-A) MaxMin fairness for queue buffer sharing. MaxMin fair-
ness is considered, in general, one of the most effective ways to handle resource
sharing for heterogeneous (and homogeneous) demands.

Under the above perspective, Prince is a queueing mechanism that can either
enforce socially responsible behaviour on a misbehaving player or cooperate
with a player who has the following desirable features:

• Adoption of end-to-end congestion control, that is, being responsive to
packet losses by throttling down upon congestion and throttling up to
discover the fair share.

• Self-optimization by taking into account the packet losses in the utility
function.

It should be noted that the buffer size plays an important role in the Prince
algorithm. On the one hand, using a large buffer provides us with a good
approximation of the players’ sending windows. The more packets the buffer
contains at congestion, the better our queue snapshot captures each flow’s
contribution. On the other hand, a large buffer creates more queueing delay for
all the flows traversing the router and extra computational cost to the router’s
overall job. However, in our experiments we obtained fair bandwidth allocations
even with small buffer sizes.

23

3.5 Experiments

3.5 Experiments
3.5.1 Experimental Setup
We carried out a large set of experiments on the established ns2 network simu-
lator [1]. As a first step, we verified that Prince manages to shield the fair share
of the well-behaved flows by reducing the bandwidth of the aggressive players.
We also examined the efficiency of our algorithm by monitoring its achieved
goodput, loss rate and fairness. Finally, we used the heuristic methodology
of [3] to find symmetric NE for our game and then evaluated its efficiency.

This methodology is executed in iterations. In the first iteration, we set 𝛼1 = 1
for flows 1, … , 𝑛 − 1 and search for the best response of flow 𝑛. Let 𝛼1,u�u�u�u� be the
value 𝛼, with which 𝑛 achieves the best goodput. In the next iteration, flows
1, … , 𝑛 − 1 play with 𝛼2 = 𝛼1,u�u�u�u� and we search for the best 𝛼u� in this profile. If
at iteration k, 𝛼u�,u�u�u�u� = 𝛼u� then this value, denoted by 𝛼u�, is the SNE of the game.

Furthermore, we defined the Normalized Fairness Index (NFI) which is the
Fairness Index normalized to the MaxMin Fairness bandwidth allocation, in
order to measure the distance between the bandwidth allocation of Prince and
MaxMin. The NFI is given by:

𝑓 (𝑥1, … , 𝑥u�, 𝑦1, … , 𝑦u�) =
(∑u�

u�=1
u�u�
u�u�

)2

𝑛 ∑u�
u�=1 (u�u�

u�u�
)2

where 𝑥u� is the goodput of the 𝑖-th flow using the under examination algorithm
and 𝑦u� is the goodput of the same flow achieved with MaxMin (DRR implemen-
tation).

We selected a simple dumbbell topology with two set of parameters. The first
set (Topology 1) defines a topology with a bottleneck connection of 10Mbps/10ms
(Bandwidth/Delay) and source/sink connections of 10Mbps/1ms. The queue
size of the congested router is set to the Bandwidth × Delay product (BWxD),
which is 25 packets. The second set (Topology 2) uses a topology with bigger ca-
pacity; 100Mbps connections. For this set, the queue size is 100 packets, which is
significantly less than BWxD packets (250), in order to examine the effectiveness
of Prince under limited information.

The number of the players in the game was 10 for the first topology and in
the range 10 … 100 for the second one. The players were TCP, UDP or mixed
TCP and UDP flows. The TCP flows could define their strategy by selecting
the value for the additive increase parameter 𝛼 from 1 (standard TCP value)
to 20. We have chosen the TCP SACK version for the implementation of the
loss recovery mechanism because it is widespread and tolerant to packet losses.

24

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

UDP flows can define their strategy by selecting their constant sending rate
from the fair share value to the bottleneck’s bandwidth value.

We evaluated the performance of Prince and compared it to MaxMin, Drop-
Tail, RED and CHOKe. For MaxMin and RED we used the default implementa-
tions of ns2 while for CHOKe (which was not available) we used the implemen-
tation from [111]. Each experiment starts with a 10sec period for stabilization
and continues with 100sec for measurements. The flows start randomly between
0 … 1 sec and use a constant packet size of 1Kbyte. The minimum and maximum
thresholds for RED and CHOKe were set automatically, depending on the link
bandwidth and delay. The ideal MaxMin Fairness policy was represented by
DRR (Deficit Round Robin) [40] with the number of queues equal to the number
of players. The number of counters for Prince-A was set according to the queue
size and number of flows of each experiment; in the following figure legends,
the number of counters used appears parenthesized.

3.5.2 Results
3.5.2.1 Synthesis of TCP Flows
This synthesis was examined with both topologies and various aggressive play-
ers. Using Topology 1 we ran experiments with nine standard TCP players and
an aggressive one that changes his additive increase parameter 𝛼 from 1 to 20 in
a series of identical games. The results showed that the aggressive player gains
at most 15% more than his fair share under Prince-G and Prince-A, and at most
25% under Prince-S (Figure 3.2). Note the inability of DropTail to restrict the
aggressive flow. RED has similar performance to DropTail and is omitted from
the figure for clarity.

With MaxMin or CHOKe the aggressive player has goodput below his fair
share for all 𝛼 values except 𝛼 = 1, but the loss rate for CHOKe is higher (over
10%) than Prince-G (max 5%) and the total goodput is lower (1150 versus 1250
packets/sec). Prince-G sets an upper bound to the goodput of each player and
a lower bound which is close to the fair share. Therefore the Fairness Index of
Prince-G is close to 1 regardless of the aggressiveness of the player (Figure 3.3).
DropTail has similar performance to RED and is omitted from the figure for
clarity.

For Topology 2 with 99 standard TCP players and an aggressive one, all
variants of Prince manage to track and restrict the selfish player (Figure 3.4),
having similar loss rate and goodput with MaxMin and CHOKe. A direct
comparison of Prince-G to MaxMin (Figure 3.5) showed that the difference
between the goodput of the standard and the aggressive player is lower under
Prince-G, achieving a better Fairness Index.

25

3.5 Experiments

Figure 3.2: Goodput of the aggressive TCP player

Figure 3.3: Fairness Index

Furthermore, we performed additional experiments with larger numbers of
aggressive players and found that Prince-G’s performance advantage increases.
For the same topology with 90 standard and 10 aggressive TCP players, Prince-
A achieves to moderate the aggressive players despite using only 10 counters.
Prince-G and Prince-S can easily detect the aggressive flows. This is due to the
fact that standard players are more rarely the majority players when many
greedy players participate, so their fair share is guaranteed. Moreover, the
more aggressive a player is, the easier it is for Prince to protect the standard
players. On the contrary CHOKe fails when many selfish flows participate and

26

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

Figure 3.4: Goodput of the aggressive TCP player

Figure 3.5: Prince-G Vs. MaxMin

the deficiency of RED and Droptail is also obvious on Figure 3.6.
On Figure 3.7 a direct comparison of Prince-G and CHOKe is depicted.

Prince-G shields the fair share of the standard players no matter how aggressive
the players are. As the aggressive players increase their parameter 𝛼 the differ-
ence between them and the standard players becomes more pronounced and
thus Prince-G can more easily safeguard the latter. CHOKe seizes the selfish
players only when they choose high values for parameter 𝛼 (𝛼 > 10).

Prince-A is highly effective when many selfish TCP flows are traversing the
same bottleneck. The convergence of the goodput between the standard and the

27

3.5 Experiments

Figure 3.6: Average Goodput of the aggressive TCP players

Figure 3.7: Prince-G Vs. CHOKe

aggressive flow is depicted on Figure 3.8. For 𝛼 < 8, Prince-A allocates equally
the bandwidth between standard and aggressive flows, while RED encourages
players to behave greedily.

3.5.2.2 Synthesis of UDP Flows
For Topology 1, we use nine UDP players with sending rate equal to their fair
share (1Mbps) and one aggressive player that chooses his rate in the range 1 … 10
Mbps for each game. It is evident that only Prince-G and MaxMin can minimize
the greedy player, while DropTail and RED fail (Figure 3.9).

28

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

Figure 3.8: Prince-A Vs. RED

Figure 3.9: Goodput of the aggressive UDP player

Prince-S has identical performance to Prince-G and is omitted. CHOKe does
not effectively minimize the selfish player, therefore standard players suffer
losses. A UDP flow sending at the fair share cannot be the majority player in the
buffer. Therefore, Prince-G shields its fair share and achieves a Fairness Index
equal to 1 (> 0.99), just like MaxMin (Figure 3.10).

For Topology 2, we used 90 standard UDP players and 10 aggressive players
that choose their rate in the range 1 … 100 Mbps for each game. The effectiveness
of Prince-G is depicted in Figure 3.11, where the fair share of the standard UDP
players is shielded even better than by MaxMin. For MaxMin, the goodput of
the standard players is less than the fair share because the queue capacity is less

29

3.5 Experiments

Figure 3.10: Fairness Index

than the BWxD product.

Figure 3.11: Goodput of the standard UDP player

3.5.2.3 Mixed Synthesis of TCP and UDP Flows
It is important to examine the efficiency of our queueing mechanism with diverse
player sets. Therefore, in Topology 1, we use four standard TCP players (𝛼 = 1)
and four standard UDP players (1Mbps) as well as one aggressive TCP player
with 𝛼 = 2 and one aggressive UDP player with a 10Mbps sending rate. In
Figure 3.12, we see that Prince resembles MaxMin Fairness for the aggressive

30

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

UDP player, unlike DropTail, RED and CHOKe.

Figure 3.12: Goodput of the aggressive UDP player

Moreover, the aggressive TCP flow is also limited to the fair share (Fig-
ure 3.13). With RED and CHOKe all the TCP players are deprived of their fair
share (equal to 125 packets/sec), while with DropTail the aggressive TCP player
obtains 30% more than his fair share.

Figure 3.13: Goodput of the aggressive TCP player

The convergence of Prince-G to MaxMin is more clear by using the Normal-
ized Fairness Index, shown in Figure 3.14. Moreover, Prince-G ensures a fair
allocation of bandwidth to all the players and as a consequence achieves a high
Fairness Index.

31

3.5 Experiments

Figure 3.14: Normalized Fairness Index

3.5.2.4 NE Results
We used the aforementioned methodology to heuristically find a symmetric NE
of the game, with either only TCP or only UDP flows. For the TCP game, a part
of the results can be deduced directly from Figure 3.2. If the mechanism of the
game is Prince-G, Prince-A or MaxMin, then the player has nothing to gain by
increasing his additive increase parameter 𝛼 beyond the standard TCP value.
For Prince-S, CHOKe, RED and DropTail, the derived NE are less desirable due
to the high loss rate and the slightly reduced goodput (Figure 3.15).

Figure 3.15: Efficiency of NE with TCP players

For the UDP game, MaxMin, Prince-G and Prince-S lead to efficient and
fair NE because a player has equivalent performance for almost every available

32

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

sending rate (Figure 3.9). The other queueing policies fail to control the aggres-
sive players, so the game results in an unfair and inefficient NE (Figure 3.16).

Figure 3.16: Efficiency of NE with UDP players

3.5.2.5 Comparison
The three variants of Prince express the same game theoretic idea but do not al-
ways achieve equivalent results. Prince-G adopts a moderate treatment to limit
aggressive flows, so it leads the game to a desirable NE. Prince-A can achieve
similar performance to Prince-G, despite its stateless implementation, in certain
problem classes. It allows us fine grained control over the complexity/perfor-
mance trade-off, by selecting the desired number of counters. When the number
of counters reaches the upper limit, i.e., the maximum queue size, then we ob-
tain a streaming version of Prince-G. Prince-S features lower computational
complexity than Prince-G at the expense of increased loss rate at the NE due to
the aggressive penalization of the majority flow.

We ran experiments to evaluate whether Prince-S is computationally less
intensive than Prince-G. At the same time we examined the severity of Prince-S,
namely, how often Prince-S drops a packet from the last majority flow even
though the majority flow has in the meantime changed to another flow. The
following Figures (3.17, 3.18 and 3.19) show how many packets were dropped
with Prince-S in relation to the aggressiveness of the greedy flow(s). In particular,
the third column shows how many already marked packets were dropped
and originated from the current majority flow. The fourth column shows the
same, except that these packets were dropped from a flow that is no longer the
majority flow. Finally, the last column shows how many times Prince-G ran on
behalf of Prince-S, i.e. no marked packets existed in the queue.

33

3.5 Experiments

For the TCP synthesis on Topology 1 (Figure 3.2) we can discern that al-
though Prince-S restricts the aggressive player less than Prince-G, it also needs
to compute the majority flow 60% less often than Prince-G. (Figure 3.17).

Figure 3.17: Prince-S with TCP synthesis

For the UDP synthesis, Prince-S has the same efficiency as Prince-G on limit-
ing the aggressive flow. The results (Figure 3.18) for this corner case show that
Prince-S periodically deploys Prince-G (from 33% to 6% in inverse proportion
to the aggressiveness of the UDP flow) while the effect is the same. The column
which shows the hits on a non majority flow is replaced by the Prince-G deploy-
ment percentage column, because a standard CBR flow cannot be marked as
a majority flow (never exceeds its fair share). Finally, in the mixed synthesis
the deployment of Prince-S succeeds in the restriction of the aggressive TCP
flow but fails to diminish the fairly greedy UDP flow (Figure 3.12). However, its
effectiveness is quite good considering that it executes Prince-G for only 10% of
the dropped packets (Figure 3.19).

34

Chapter 3: Prince: an Effective Router Mechanism for Networks with
Selfish Flows

Figure 3.18: Prince-S with UDP synthesis

Figure 3.19: Prince-S with mixed synthesis

3.5.3 Multiple Flows

In the experiments we implicitly assumed that every network flow is considered
to be a selfish player that seeks to optimize its utility function. One can consider
all packets originating from the same IP address or the same subnet address to
belong to the same selfish player. This would ensure that a user/player that can
launch multiple flows concurrently (for any reason) will not be able to obtain an
unfair part of the network bandwidth in total. Moreover, the impact of multiple
flows per user on the fairness of the network is a general issue discussed for
example in [43]. In general, it should be possible to apply any other successful
approach to handle this issue (beyond the simplistic grouping of flows) to the
Prince algorithms.

35

3.6 Conclusions

3.6 Conclusions
Based on our theoretical and experimental results, the following features of
Prince emerge:

• It allocates bandwidth to each player close to his fair share.

• It leads to efficient NE with high goodput and low loss rates.

• It sustains its high performance even in the presence of multiple aggressive
TCP or unresponsive high-rate UDP flows.

• It exhibits the positive side-effect of avoiding both the synchronization
and the starvation of flows.

The previous features make us confident that Prince, besides being simple, is
highly effective.

The basic game-theoretic idea of Prince, targeting and restricting the majority
flow, yielded interesting results. A secondary outcome is that fair buffer sharing
can result in fair bandwidth sharing.

Our future endeavours include examining hybrid variants of Prince in order
to further optimize its computational performance. Additionally, we need to
examine the behaviour of Prince in complex network topologies and heteroge-
neous router compositions.

36

CHAPTER 4

A Heaviest Hitters Limiting
Mechanism with O(1) Time

Complexity for Sliding-window
Data Streams

4.1 Introduction
In this work, we aim to combine a novel algorithm for identifying the heaviest
hitters in a sliding-window data stream with the ability to track the items in
that sliding window in order to implement the fair rate-limiting mechanism
experimentally analysed in Chapter 3. This results in a constant time algorithm
which is able to fairly distribute the shared service resource to the incoming
items.

The sliding-window data stream model is very similar to a traditional limited-
size queue, used frequently in network routers to buffer packets while they await
service. This is the motivating problem we used to implement and evaluate
our algorithms and data structures. More generally, however, the problem of
finding the heaviest hitters in a data stream, i.e., the problem of finding which
category of items in a long succession of them are the most frequent ones, has a
number of applications, some of them quite pervasive. Some applications are
in financial data streams, where it is useful, for example, to know which stocks
are showing the most mobility. Other applications include sensor networks (for
example, helping an intrusion detection scheme [88]) and filtering sensed data,
behaviour analysis on websites and trend tracking of hot topics (for example,

37

4.1 Introduction

accurately counting the hottest queries for caching [21]).
The motivating application, as mentioned, is network traffic monitoring (and

shaping) on Internet routers. Being able to tell at any moment in time which set
of packets is the most frequent passing through a router (collectively referred
to as a flow of packets) helps in both being able to tell what may be causing
problems and subsequently resolving these problem in a “fair” manner towards
those not contributing to the problem. In this work, we specifically address this
issue by implementing the Prince queue policy initially described in [25] and
experimentally analysed in Chapter 3. This policy has been shown to be able
to successfully and fairly limit aggressive flows which send service requests,
in our case packets, at a rate higher than the fair share they should request in
order not to disadvantage other non-aggressive flows. To solve this problem we
create a data structure and a set of associated algorithms which operate on it
to solve the heaviest hitters problem on the network router queue. The basic
heaviest hitters problem consists of a data stream where at each moment in time
one item, which belongs to some itemset, arrives for processing. The goal is to
be able to provide a list of the itemsets whose item counts are above a given
𝜃 threshold. Given the unbounded number of itemsets and length of the data
stream, this cannot be achieved without unbounded memory. As a result, all of
the proposed solutions for this problem have provided approximate results.

We address a variant of the basic problem in this work which stems from the
observation that only a section of the whole history of the data stream may be
interesting. Usually, the most recent items are considered to be more important.
This is one of the most common and arguably one of the most useful of these
variations: finding the heaviest (and lightest) hitters in a sliding-window data
stream.

In the sliding window model, at each moment in time the maximum number
of items which participate in a window over the data stream is constant. This
window contains at most the 𝑄 most recent items. This scenario resembles the
operation of a queue with an upper limit on its capacity. As items arrive to be
processed they are inserted at the end of the queue and as items are processed
they are removed from the front of the queue.

All the algorithms proposed for both the basic problem and the sliding
window variation have in common the requirement that they be able to operate
on-line. This entails being able to do only one pass over the data, i.e., each
arriving item may be examined only once by the algorithm. This is usually called
an update operation and the complexity of this operation must be constant time.
Furthermore, querying for the heaviest hitters must also be as fast as possible,
ideally proportional to the number 𝑘 of the heaviest or lightest hitters that we
request to be found.

38

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

Our algorithm supports the ability:

1. To provide exact results in the query operation and at the same time main-
tain constant time update and query operations.

2. To provide not only the heaviest but also the lightest hitters in the sliding
window with the same performance and no overhead.

4.2 Related Work
This work merges the results from two separate fields to achieve our goals. The
first field relates to the fair and balanced distribution of resources (and in this
case specifically network router resources) to competing entities. In this field,
network congestion has been described game-theoretically by Nagle [73] and
the solution put forth used a market wherein the rules of the game would lead
to the optimal strategy for the individual entities also being the optimal solution
for the system. In a later work, Shenker [93] describes the relation between the
selfish entities and the switch service mechanisms and proposes a method of
guaranteeing efficient and fair operating points. Since then, the coordination
of Internet entities has been modelled through various game definitions [3, 85].
We use the model proposed by [25] and experimentally analysed in Chapter 3
in order to achieve the fair and balanced distribution of resources.

The second field relates to the heaviest hitters problem and its solution in a
sliding-window data stream context. This problem was first posed by Moore in
1980 and together with Boyer they presented the solution (in [10]) for finding the
majority hitter in the basic version of the problem, i.e., non-window-based data
streams. This problem was studied and approximate solutions were proposed
much later and concurrently by [18, 49]. Since, a significant body of work has
been performed on both the basic problem and on its numerous variations. A
good presentation of this work can be found in [61, 71].

4.3 Proposed Abstract Data Type
In order to provide an accurate description of our algorithm and the accompa-
nying data structure we describe here its interface. The abstract data type which
we define supports the operations shown in Table 4.1. All the operations in our
HL-HITTERS implementation have constant time complexity.

39

4.3 Proposed Abstract Data Type

Table 4.1: The HL-HITTERS Abstract Data Type

Operation Input Output Description
Initialize − − Initializes the ADT
Append Item − Records a new item

into the counts
Expire Item − Removes an item

from the counts
QueryHeaviest k: Int Array[k] Gets the heaviest-k

ItemSets
QueryLightest k: Int Array[k] Gets the lightest-k

ItemSets
GetOldestItem ItemSet Item Finds oldest item
GetNewestItem ItemSet Item Finds newest item

4.3.1 Building Blocks
To implement the data structure we use common basic building blocks. More
specifically, we use exactly one array of fixed size, multiple doubly linked lists
and one hash table. With each of these data structures we only use the constant
time operations. Thus, for example, we never iterate over the nodes of the linked
list to reach a sought entry, rather we keep references to the node itself. We
will proceed by describing exactly which operations will be used on each data
structure and its time complexity.

4.3.1.1 Array
The array must be of size 𝑄, the same as the size of the window, and its size
remains constant during the execution of the algorithm. We only perform the
operations Get and Set on the array, which execute in constant time. The
elements of the array are never iterated over.

In the implementation for our experiments we used the standard vector
provided by the C++ STL (Standard Template Library) std::vector class.

4.3.1.2 Doubly-linked List
The linked lists start out empty and as the algorithm executes nodes are added
and removed. We only use the Head and Tail fields of the doubly-linked list to
access the respective nodes in constant time. As far as the inserts and deletes
are concerned, they are always executed with respect to a reference node and
as such are constant time as well. To be more specific, InsertBefore and

40

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

InsertAfter require two arguments: the new node to insert and a reference
node before or after which to insert the new node. Similarly, Delete requires
a direct reference to the node to delete. Furthermore, the maximum number
of nodes is known a priori to be 𝑄, and thus we can eliminate the overhead of
dynamic memory allocation for the nodes by using a preallocated node pool.

In the implementation for our experiments we used the a custom doubly-
linked list implemented by using the Boost intrusive list [58] and a simple pool
allocator to avoid all list node memory allocations and deallocations during the
operation of the algorithm.

4.3.1.3 Hash-table
In the HL-HITTERS data structure the id of each itemset with at least one
item in the window, is stored in a dynamic dictionary. A hash-table is used to
implement the dynamic dictionary. Hashing is commonly assumed to require
𝑂(1) amortized time for the operations Get, Set and Delete or at least for
one of these operations. However, there are at least two examples of hashing
schemes which achieve worst case 𝑂(1) time with high probability (whp): the
early work of [20] and the recent algorithm of [7]. Consequently, we can assume
that an efficient, 𝑂(1) hashing scheme can be used in the HL-HITTERS data
structure.

There is an additional reason why we can assume 𝑂(1) time for our hashing
scheme. Given that our original motivation were router queues, we can assume
that the maximum size of a window does not typically exceed 1000 items (packets
in this case). The most common values are a few hundred items. This fact admits
us the luxury to run the hashing data structure with a very low load factor. For
example, even a hash table with 1 million entries would not be a significant cost
for a modern router.

Consider the following naive approach with chained hashing using a uni-
form hashing function with 𝑛 hash table entries, 𝑚 ≪ 𝑛 = 𝑐𝑚 packets, and 𝑘,
the constant upper bound on the number of collisions. The probability 𝜌 of
experiencing more than 𝑘 collisions in any of the 𝑛 table entries is

For 𝑛 = 106, 𝑚 = 103 and 𝑘 = 10 the first inequality gives that 𝜌 ≤ 2.38 × 10−35.
Consider now a router which serves 109 packets per second (a bit unrealistic
today but allows for future enhancements) and operates continuously for 20
years. This router can serve not more than 𝑍 = 109 × 60 × 60 × 24 × 366 ×
20 ≤ 6.34 × 1017 packets during its lifetime. Even if we consider the case

41

4.3 Proposed Abstract Data Type

where every one of these 𝑍 packets is unique, i.e., the router never receives
two packets from the same flow and thus maximizes the potential for collisions
to appear, the probability of a ”bad” collision event occurring during its lifetime
is 𝜌 ∗ 𝑍 ≤ 2.38 × 10−35 × 6.34 × 1017 = 1.51 × 10−17. This probability is thus
practically negligible. Consequently, even the naive approach seems to meet
the requirements for a router. In addition to this naive implementation there
are many, very efficient, hashing schemes which will perform much better.

Unfortunately, however, in practice a standard cuckoo hash table occasionally
experiences insertion operations that take significantly more time than the
average. The question of which of the published hashing schemes offers the
optimal trade-off between space redundancy and worst case bounds could be an
interesting problem to investigate. However, for our purposes, any lightweight
hashing scheme will be sufficient if sufficient memory is provided. Moreover, for
our main motivation application, special hardware-based memory is available
in many routers which can achieve de-amortized 𝑂(1) performance [82].

Based on the above arguments, we plausibly assume that we can employ an
efficient 𝑂(1) whp hashing scheme for our data structure in a modern network
router. Additionally, we believe that the arguments used for the router case
can apply to other applications of window-based heaviest and lightest hitter
problems. In the implementation used for the experiments of this work, we used
chained hashing provided by the C++ boost::unordered_map class[44].

4.3.2 Data Structure
We now proceed to describe how the data structure is composed out of the basic
building blocks. An overview of the layout used is presented in Figure 4.1. It
should be noted that the Queue is not part of the HL-HITTERS data structure
itself but is displayed in order to illustrate the pointers to the items it contains
stored in the data structure.

Before proceeding with the description of the data structure further, we need
to describe two types of simple record-like structures which are used:

• CountNode, which is the type of the list node used in the doubly-linked
list. The data stored (besides the Previous and Next fields) is an integer
named Count, the identifier of an ItemSet named ItemSet and a linked
list of references to items in the queue named QItems.

• CountRange, which has two fields, named First and Last, both of which
are references to a doubly linked list node of type CountNode. This
structure is meant to store the endpoints of a sub-range of the Counts
DLList. To support this, it supports two simple operations: Insert (a

42

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

Fi
gu

re
4.

1:
Th

e
A

D
T’

ss
tr

uc
tu

re
.

43

4.3 Proposed Abstract Data Type

Algorithm 1 The Initialize operation
1: procedure Initialize
2: ItemSets ← new HashTable
3: Counts ← new DLList
4: Ranges ← new Array
5: end procedure

new node in range) and Remove an existing node from the range. Both
are 𝑂(1) operations as they manipulate only the First and Last fields and
do not iterate over the nodes in the range.

4.3.2.1 Layout of the Data Structure
Itemsets that have no items in the window, i.e., a count of zero, will not have
any entries in any of the data structures. Conversely, each itemset which has
at least one item in the window, i.e., a count ≥ 1, will have one entry in the
ItemSets HashTable. Additionally, for each itemset, there will exist one node
of type CountNode in the Counts DLList, with a Count field corresponding to
its exact count of items in the window and a QItems field containing pointers to
its items in the queue. Finally, for each group of itemsets which have the same
item count there will be one entry in the Ranges Array, in the position of the
array which is equal to the itemset group’s count.

4.3.3 Algorithms
We now present the operations which are supported by the data structure using
pseudo-code and describe their operation and computational complexity in
detail.

4.3.3.1 Initialization
The Initialize operation is shown in Algorithm 1. While its functionality
is simply to initialize the ItemSets hash table, the Counts doubly linked lists
and the Ranges array, it is useful nevertheless to illustrate that initialization
is straightforward and that only memory allocations are performed. For the
DLList, the allocation of the node pool is also performed here.

4.3.3.2 Append
In Algorithm 2 we present the Append operation. It receives the item which
is to be appended as a parameter. The itemset of the item is looked up in the

44

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

Algorithm 2 The Append operation
1: procedure Append(item: Item)
2: itemset ← item.GetItemSet()
3: cn ← cn′ ← null
4: if itemset ∈ ItemSets then
5: cn ← ItemSets.Get(key:itemset)
6: cn′ ← Ranges.Get(index:cn.Count).Last.Next
7: Ranges.Remove(node:cn)
8: Counts.Remove(node:cn)
9: cn.Count ← cn.Count + 1

10: cn.QItems.Push(item)
11: Counts.InsertBefore(before:cn′, ins:cn)
12: Ranges.Insert(node:cn)
13: else
14: qi ← new DLList
15: qi.Push(item)
16: cn←new CountNode(ItemSet:itemset,Count:1,QItems:qi)
17: Counts.InsertBefore(before:Counts.Head, ins:cn)
18: Ranges.Insert(node:cn)
19: ItemSets.Set(key:itemset, value:cn)
20: end if
21: end procedure

ItemSets hash table. If it is found, then the itemset is already being counted, i.e.,
has other items in the window, and therefore its count must be increased by one.
If not, then it is a new itemset, i.e., it has no other items in the window, and thus
must be recorded with a count of one and a pointer to item in the queue has to
be stored.

For the case of being already counted, only the Counts and the Ranges struc-
tures will be modified. The idea is to move the count node corresponding to the
itemset to the position in the Counts linked list where it will be the first linked
list node with the new count. In order to do this, the count node of the itemset is
looked up via the Get operation on the hash table and a reference to it is stored
in cn. Before removing the cn node from the list, the position in the linked list
where it will be moved to is recorded in cn′, with help from the Ranges Last field.
This will point to the immediately next linked list node after the last node with
the old count. Subsequently, the count node cn is removed from the linked list
and the corresponding Ranges count range entry is updated with the Remove
operation. Finally, the cn node is inserted in the linked list before the cn′ node,
the new Ranges count node entry is updated to include it and a pointer to the

45

4.3 Proposed Abstract Data Type

item in the queue is pushed at the end of the QItems queue (in 𝑂(1)).
For the case of not being already counted, all of the structures will be mod-

ified. A new count node will be created to hold the count for the new item-
set. Since allocating a new object on the heap may not be 𝑂(1), we can take
advantage of the fact that the maximum number of itemsets is 𝑄, as explained
in Section 4.3.1.2, and as such we can just take out a preallocated count node
out of a preallocated pool in 𝑂(1). A new DLList is created to store the point-
ers to items in the queue which belong to this itemset and is used in the new
count node. This node is then inserted in the position of the Counts linked list
indicated by the First field in the first count range entry of the Ranges array and
then it is recoded in the same count range entry. Finally, the itemset hash table
is updated by creating an entry that maps the new itemset to the count node
which was created previously using the Set operation.

4.3.3.3 Expire
In Algorithm 3 we present the Expire operation. It receives the item which is
to be removed as a parameter. The item’s itemset is looked up in the ItemSets
hash table via the Get operation and the reference to the count node in the
Counts linked list representing it is stored in cn.

Since the count of the itemset will be decremented by one, we need to move
the cn count node to the position in the Counts linked list where it will be the first
linked list node with the new (old minus one) count. Similarly to the Append
operation, before removing the cn node from the list, the position in the linked
list where it will be moved to is recorded in cn′, with help from the Ranges First
field. This will point to the immediately previous linked list node after the first
node with the old count. Subsequently, the count node cn is removed from the
linked list and the corresponding Ranges count range entry is updated with the
Remove operation. The first item in the count node’s QItems queue is popped
and the count node Count field is decremented by one. If the count has not
reached zero a check is made to see whether the position to be moved is valid:

• The reference in cn′ must be not null, which would indicate that the previ-
ous count range was the first in the linked list, and

• the count of the cn′ referenced node must be the same as the new count
of the moving node, i.e., the target count node must belong to the correct
count range.

If this check succeeds, the new corresponding Ranges count range entry is fetched
with the Get operation. Its First field is set as the new cn″ insertion position.
Afterwards the moving node is inserted there. If the check fails, then there is

46

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

Algorithm 3 The Expire operation
1: procedure Expire(item: Item)
2: itemset ← item.GetItemSet()
3: cn″ ← null
4: cn ← ItemSets.Get(key:itemset)
5: cn′ ← Ranges.Get(index:cn.Count).First.Previous
6: Ranges.Remove(node:cn)
7: Counts.Remove(node:cn)
8: cn.QItems.Pop(item)
9: cn.Count ← cn.Count - 1

10: if cn.Count ≥ 1 then
11: if cn′≠ null and cn′.Count = cn.Count then
12: cn″ ← Ranges.Get(index:cn′.Count).First
13: Counts.InsertBefore(before:cn″, ins:cn)
14: else
15: Counts.InsertAfter(after:cn′, ins:cn)
16: end if
17: Ranges.Insert(node:cn)
18: else
19: delete cn.QItems
20: delete cn
21: ItemSets.Delete(key:itemset)
22: end if
23: end procedure

no CountRange entry in the Ranges array corresponding to the new count and
the count node is inserted right where the original cn′ reference pointed to.

In both cases, the moving count node will be inserted in the Ranges entry
with the new count using the Insert operation.

If the new count after decrementing by one is zero, the count node is deleted.
Before doing that, the count node’s QItems DLList is also deleted and returned
to the preallocated pool. If a preallocated pool was used it is returned to the
pool in 𝑂(1). Finally, the itemset hash table is updated by deleting the entry that
maps the itemset to the count node which was previously deleted.

4.3.3.4 Query
In Algorithm 4 we present the QueryHeaviest and the QueryLightest
operations simultaneously. The basic algorithm is the same; only the start of
the iteration and its direction is different. In the algorithm, the left side of the

47

4.3 Proposed Abstract Data Type

Algorithm 4 Query Heaviest ↔ Lightest operation
1: function QueryHeaviest(k: Integer)
2: results ← new Array[k]
3: cn ← Counts.Tail ↔ Counts.Head
4: 𝑖 ← 1
5: while 𝑖≤k and cn≠null do
6: results[𝑖] ← cn.ItemSet
7: cn ← cn.Previous ↔ cn.Next
8: 𝑖 ← 𝑖+1
9: end while

10: return results
11: end function

↔ symbol corresponds to the QueryHeaviest operation while the right side
to the QueryLightest operation.

The algorithm receives the threshold k as a parameter. Initially, a new results
array of size k is created to hold the results. In some cases, there may be less
than k itemsets available, therefore a number of positions at the end of the array
will have null entries.

The count node reference cn is set to point to the last (for QueryHeaviest)
or the first (for QueryLightest) node in the Counts linked list via its Head or
Tail fields. Afterwards, an iteration is performed up to k times. In each step, the
current itemset stored in the node referenced by cn is stored in the current (the
𝑖-th) index of the array. Finally, the result is returned.

The whole operation makes up to k iterations, at each one adding a differ-
ent itemset to the result. This makes this operation have a time complexity of
𝑂(𝑘) and as such is constant time as well. The operation of the query algorithm
can easily be extended without changing the computational complexity to also
return the actual count of each itemset along with each itemset. In addition it
is possible instead of specifying a k parameter to return all the itemsets with
the highest/lowest count. To implement this, retrieve the Tail/Head count node
of Counts, get the highest/lowest count, access the Ranges entry correspond-
ing to that count and get the range of count nodes between the First and Last
fields with the max/min count. This algorithm’s computational complexity
will depend on the number of itemsets which will be the max/min count. As
it is possible to have 𝑄 itemsets each with a count of one, this algorithm will
have a worst case complexity of 𝑂(𝑄). However, in practice in many applica-
tions this will seldom be the case. Another extension would be to return the
heaviest-𝜃/lightest-𝜃 hitters, where 𝜃 is relative, expressed as a proportion of
the window size (e.g., 𝜃 = 10%). However, here the QueryHeaviest and the

48

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

Algorithm 5 Get Oldest ↔ Newest Item operation
1: function GetOldestItem(itemset: ItemSet)
2: cn ← ItemSets.Get(key:itemset)
3: item ← cn.QItems.Front() ↔ cn.QItems.Back()
4: return item
5: end function

QueryLightest operations will have different complexities. Since there is an
upper bound on the number of itemsets which can have a frequency more than
or equal to 𝜃 equal to 1/𝜃, one can just execute QueryHeaviest with k = 1/𝜃
and the complexity will be as originally 𝑂(𝑘). However, no such bound exists
for the QueryLightest case, and therefore its worst case complexity will be
𝑂(𝑄). Finally, if one is willing to accept an 𝑂(𝑄) worst case complexity it is pos-
sible to create cumulative versions of both the original and the relative version
of the query operations, where the k or 𝜃 parameters denote the cumulative
count or proportion of the window. This would return the first itemset whose
counts together add up to the specified threshold.

4.3.3.5 GetItem
In Algorithm 5 we present the GetOldestItem and the GetNewestItem oper-
ations simultaneously. The basic algorithm is the same; only the retrieved end of
a queue is different. In the algorithm, the left side of the ↔ symbol corresponds
to the GetOldestItem operation while the right side to the GetNewestItem
operation.

The algorithm receives the itemset of which the oldest or newest item in the
queue is to be found. Initially, the count node corresponding to the itemset is
retrieved from the ItemSets hash table. Subsequently, the QItems linked list in
the count node is accessed and depending on whether the oldest or newest item
in the queue is requested, the front or back item in the queue is returned.

Since no iterations are performed and since only the first or last item of the
linked list QItems is accessed, these operations are performed in 𝑂(1).

4.3.4 Space Complexity
The space complexity of the HL-HITTERS data structure can be fully derived
and is exclusively dependent on the maximum window size 𝑄. The ItemSets
hash table contains a maximum of 𝑄 entries, the Ranges array has a constant
size of 𝑄 entries and the Counts doubly linked list contains a maximum of 𝑄
count nodes. Furthermore, each node in the doubly linked list Counts, contains

49

4.4 Results

Table 4.2: Computational Complexity

Operation DirectCounting HL-Hitters
Initialize O(Q) O(Q)
Append O(1) O(1)
Expire O(1) O(1)
QueryHeaviest O(Qlogk) O(1)
QueryLightest O(Qlogk) O(1)
GetOldestItem O(1) O(1)
GetNewestItem O(1) O(1)

QItems, a linked list of pointers to items in the queue. This linked list uses a pool
of preallocated nodes which is shared between all the Counts nodes. Since there
can only at most 𝑄 items in queue, the preallocated pool of QItems nodes also
has a size of 𝑄. It follows that the space complexity of the whole HL-HITTERS
data structure is 𝑂(𝑄).

4.4 Results
It is clear from the previous analysis that the computational complexity of the
HL-HITTERS algorithms presented is overall constant time whp. However, this
does not guarantee an acceptable level of performance if in practice the con-
stant time required is too high. We have created a router-like scenario, and have
performed experiments to gauge the actual performance of the proposed algo-
rithms. We have to note that, to our knowledge, there exists no other algorithm
for calculating the heaviest-𝑘 hitters exactly, which also provides close to con-
stant time performance. Therefore, we have implemented a naive but efficient as
far as possible algorithm to find the heaviest-𝑘 hitter. This algorithm, each time
the heaviest hitter is requested, creates a hash-table, and records within it the
counts for each itemset. As it does this, it keeps track of the running heaviest
hitter. However, this algorithm has an 𝑂(𝑄𝑙𝑜𝑔𝑘) time complexity, due to the
partial (𝑘−largest) sort needed to find the heaviest-k hitters. Furthermore, in the
experiments performed, we restricted ourselves to finding the top heaviest hitter
only, i.e., 𝑘 = 1, in order not to significantly disadvantage the direct counting
algorithm. For reference, the computational complexity of the operations imple-
mented by the direct counting and the HL-HITTERS algorithm is presented in
Table 4.2.

50

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

Figure 4.2: Scenario 1. Performance of HL-HITTERS vs. direct counting for
different 𝑄 queue lengths and grouped based on operation per-
formed (counting or counting+querying) and on whether the packet
positions in the queue are tracked. Measured in mean process-
ing time per packet (shown in 𝜇s). The maximum time taken by
HL-HITTERS is 0.25𝜇𝑠.

4.4.1 Experimental Scenarios
The experimental evaluation of our implementation is performed in two distinct
scenarios. The first scenario is geared towards evaluating the performance of
HL-HITTERS when the queue is full but experiences no dropped packets, i.e.,
the rate of serving packets from the end of the queue is the same as the rate of
arriving packets at the beginning of the queue. Furthermore, this scenario seeks
to evaluate how much impact querying to find the heaviest hitter has when it
is performed every time a new packet arrives at the queue, since this is what
would happen in a real application. Finally, it seeks to measure the impact of
tracking the packets which belong to each flow within the queue. This ability
will permit the implementation of the Prince policy in the second scenario.

The second scenario aims to measure both the performance and the efficiency
of the Prince policy in contrast to a simple FIFO (DropTail) policy when the queue
is full and experiences dropped packets, i.e., the rate of serving packets from the
end of the queue is higher than the rate of arriving packets at the beginning of
the queue. In this scenario, we use two groups of flows, normal and aggressive.
The normal flows, which constitute 90% of the total number of flows never send
packets at a rate higher than their fair share while the aggressive flows (10% of
total flows) always exceed their fair share (within a range of different amounts).
As a result, the queue is overflown and needs to drop packets. To compare
performance, the Prince policy is implemented by both the naive direct counting

51

4.5 Discussion

algorithm and HL-HITTERS. We measure the time taken to service packets as
well as how fairly the policies manage to limit the aggressive flows while not
disadvantaging the normal flows.

4.4.2 Experiment Setup
The implementation has been performed using C++, with standard C++ versions
of the building blocks, as described in section 4.3.1. We used the G++ compiler
with all the optimizations enabled (−𝑂𝑓 𝑎𝑠𝑡) for our specific architecture. The
experiments were executed on an Intel Quad Core Q9300 processor with 4𝐺𝐵 of
main memory, using one dedicated core for the execution of the experiments.
The operating system used was Arch Linux, with the 3.0.1 version kernel. For
each result point 10 identical sequential executions of the experiment were
performed to remove any bias.

4.5 Discussion
A selected but representative and indicative of the worst case performance
subset of the experimental results are presented here.

4.5.1 Scenario 1
The results obtained for the first scenario are summarized in Figure 4.2 where the
performance of the direct counting algorithm is compared to the HL-HITTERS
algorithm. When counting only, i.e., just keeping track of the count of packets
of each flow in the queue the two algorithms perform similarly, whether they
also track the positions of the packets in the queue or not. This performance is
consistent with the theoretical O(1) complexity given in Table 4.2 for the Append
and Expire operations. However, when querying to find the heaviest hitter
(𝑘 = 1) is introduced (counting needs to be performed as well since without
it querying is not possible), the results reflect the O(Q) complexity of direct
counting and the 𝑂(1) complexity of HL-HITTERS. It is noteworthy to examine
the absolute numbers as well. The HL-HITTERS algorithm has a maximum
processing time per packet of 0.25𝜇𝑠. This means that despite using general
purpose building blocks and no hardware-based content addressable memory
or specialized CPUs, we can process at least 4 million packets per second using
our implementation. According to [95] IP packet sizes vary between 40𝑏𝑦𝑡𝑒𝑠
and 1500𝑏𝑦𝑡𝑒𝑠, with strong polarization tendencies. Given those values, we can
achieve a throughput between 1.2𝐺𝑏𝑖𝑡/𝑠𝑒𝑐 and 48𝐺𝑏𝑖𝑡/𝑠𝑒𝑐. We stress the fact
that this performance is achievable without any specialized hardware as would

52

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

Figure 4.3: Scenario 2. Performance of simple FIFO (no packet tracking) vs.
HL-HITTERS and direct counting implementing the Prince policy.
Results shown for different 𝑄 queue lengths and number of flows as
a function of the total sending rate of the flows vs. the serving rate
of the queue. Measured in mean processing time per packet (shown
in 𝜇s). The maximum time taken by HL-HITTERS is 0.45𝜇𝑠.

typically exist in an Internet router. Furthermore, performance profiling has
shown that approximately 50% of the processing time is spent on the hash-table
operations. Since these would heavily benefit from optimizations on a hardware
router, we are confident that significantly higher performance is attainable under
such conditions.

4.5.2 Scenario 2
The results generated from the experiments in the second scenario are displayed
in Figures 4.3 and 4.4. Figure 4.3 shows the results of the comparison between the
HL-HITTERS and direct counting algorithms implementing the Prince policy
with packet tracking and a simple FIFO DropTail policy (with no packet tracking).
The simple FIFO policy is the most performant and is not significantly affected
by the increase in total sending rate. The direct counting algorithm slows down
linearly with the increase in sending rate and scales badly as the queue size used
increases. The loss of performance due to sending rate increase is expected since
the QueryHeaviest operation is executed analogously more as well. However,
the bad scaling in relation to the queue size leads to unusable performance for a
router. Finally, the HL-HITTERS algorithm also slows down as the sending rate
increases, at a much lower rate, and scales very well even when the size of the
queue is increased. The absolute numbers show that the HL-HITTERS algorithm
has a maximum processing time per packet of 0.45𝜇𝑠 when implementing Prince,
which as described in the previous paragraph, would accordingly lead to a

53

4.5 Discussion

Figure 4.4: Scenario 2. Measure of policy fairness for the simple FIFO and the
Prince policy. The ideal received throughput for both aggressive and
normal flows is 100% of their fair share. Here the actual achieved
throughput of the aggressive and normal flows is displayed as a
function of the total sending rate of the flows vs. the serving rate
of the queue. Measured in percent of fair share achieved. For the
Prince policy the aggressive flows achieve a maximum of 143% of
the fair share and the normal flows a minimum of 95% of the fair
share.

throughput between 0.7𝐺𝑏𝑖𝑡/𝑠𝑒𝑐 and 26𝐺𝑏𝑖𝑡/𝑠𝑒𝑐.
Figure 4.4 shows the results of the comparison between a simple FIFO Drop-

Tail policy (with no packet tracking) and the HL-HITTERS algorithm implement-
ing the Prince policy with packet tracking. These results show that although the
FIFO policy is very fast, as seen in Figure 4.3, it is not able to limit the aggressive
players effectively. As the sending rate of the aggressive players increases and
the total sending rate as a result increases (since the sending rate of the normal
flows is constant) the aggressive players manage to obtain a much higher por-
tion of throughput in respect to the fair share that they should get. For example,
when the aggressive players send 10 times faster than the normal players the
total sending rate becomes 190% of the service rate and the aggressive players
get more than 500% of the fair share while the rest of the 90% of the flows, the
normal flows, all receive 50% of the fair share. In contrast, using the Prince
policy, the aggressive flows only manage to get 143% of the fair share and as
they increase their sending rate they make themselves clearer targets for limiting
and are limited even more effectively. At the same time, the lowest share of
throughput the normal flows receive is 95% of the fair share.

54

Chapter 4: A Heaviest Hitters Limiting Mechanism with O(1) Time
Complexity for Sliding-window Data Streams

4.6 Conclusions
Our work on the problem of the heaviest-𝑘 and lightest-𝑘 hitters in a sliding-
window data stream has resulted in a data structure and an efficient set of
algorithms for its operations. These in tandem allow us to achieve constant time
updates and queries. Building on this feature, we implement the Prince policy,
an effective rate-limiting mechanism, on a simulated router queue and show
that it is possible to achieve both a highly performant and extremely fair rate-
limiter on a router queue. We have also shown that the performance achieved
is high enough in absolute numbers to be used in practical applications. We
have attempted to maximize performance on a standard PC while at the same
time have found that using a fairly standard component in hardware routers
can potentially double performance.

An interesting idea would be to extend this mechanism to incorporate the
size of the packets as well, not only their number. This would allow us to
make decisions based on the quantity of data that an itemset is responsible for,
rather than how many items it is generating. Another direction would be to
use multiple HL-HITTERS structures in a queue in parallel, each monitoring a
different length of history. This would allow monitoring not only the highest
hitters currently in the queue but also in longer periods of time.

55

CHAPTER 5

On Money as a Means of
Coordination between Network

Packets

5.1 Introduction
It is known that a large number of independent flows is constantly competing
on the Internet for network resources. Without any central authority to regulate
its operation, the available network resources of the Internet are allocated by
independent routers to the flows in a decentralized manner. Internet flows may
submit at any time an arbitrary amount of packets to the network and then adjust
their packet rate with an appropriate flow control algorithm, like the AIMD-
based algorithms for TCP-flows. The apparent lack of coordination between
the independent flows leads the Internet to an “anarchic” way of operation and
gives rise to issues and problems that can be addressed with concepts and tools
from algorithmic game theory.

Two representative works on applying game theory to network problems
are [57, 85]. Certain game-theoretic approaches to congestion problems of the
Internet, and especially the TCP/IP protocol suite, are discussed in [93, 3, 32, 25].
A combinatorial perspective on Internet congestion problems is given in [48].
The focus of the above works and the present work is on sharing the network
resources between selfish flows. In this work, however, we propose an economy
where packets belonging to selfish flows may interact directly with each other.

The use of economic tools like pricing, tolls and taxes as a means to regulate
the operation of networks and/or to support quality of service (QoS) functional-

57

5.1 Introduction

ities in the presence of selfish flows is, for example, discussed in [78, 33, 16, 15,
65, 69]. In particular, the Paris Metro Pricing approach - using pricing to manage
traffic in the Paris Metro - is adapted to computer networks in [78]. A smart
market for buying priority in congested routers is presented in [65]. In [16, 15]
taxes are used to influence the behaviour of selfish flows in a different network
model. An important issue identified in [15] is that taxes may cause disutility to
network users unless the collected taxes can be feasibly returned to the users.
In our economic model this issue is naturally solved; trades take place between
the flows, so the money is always in the possession of the flows.

In this work, we apply a common economic tool, namely money, to coordinate
network packets. This is in contrast to much of the existing literature, which
aims to impose charges on Internet traffic, and to our knowledge, this is the first
work to propose economic exchanges directly between packets. In particular,
we present a network economy, called PacketEconomy, where ordinary network
packets can trade their positions in router queues. The role of money in this
approach is to facilitate the trades between the network packets. Queue positions
and money are exchanged directly between the packets while the routers simply
carry out the trades. We show that, in this economy, packets can self-regulate
their access to network resources and obtain better services at equilibrium points.

In their seminal work, Kiyotaki and Wright [55] examine the emergence of
money as a medium of exchange in barter economies. Subsequently, Gintis [34,
35] generalizes the Kiyotaki-Wright model by combining Markov chain theory
and game theory. Inspired by the above works, we propose the PacketEconomy
where money is used as a coordination mechanism for network packets and
prove that there are Nash equilibria where trades are performed to the benefit of
all the flows. In the PacketEconomy, specialization - the reason for the emergence
of money as per Adam Smith ([97, Chapter 4], cited in [55]) - originates from
the diverse QoS requirements of network flows. In particular, the various types
of PacketEconomy flows differ in their tolerance for packet delays.
The main contributions of this work are:

• A new game-theoretic model representing network packets as popula-
tions of rational agents. In this model, a network flow is represented as a
population of in-flight packets that can make bilateral trades with other
packets.

• Application of bilateral trades and virtual money at a microeconomic level
to support better coordination of rational network packets.

• Application of an interesting combination of ergodic Markov chains and
strategic games within the context of network games.

58

Chapter 5: On Money as a Means of Coordination between Network
Packets

5.2 An Economy for Packets
The PacketEconomy is comprised of a network model with selfish flows, a
queue that supports packet trades, a currency and a specific economic goal.
The solution concept is the Nash equilibrium (NE), i.e., a profile of the game in
which no player has anything to gain by changing only his/her own strategy
unilaterally.

The Network Model. We assume a one-hop network with a router R and a
set of N flows, as shown in Figure 5.1. This setting is equivalent to the common
dumbbell topology used for the analysis of many network scenarios, including
the seminal paper of Chiu and Jain [14] on the AIMD algorithm. The router R
has a FIFO DropTail queue with a maximum capacity of q packets and operates
in rounds. In each round, the first packet (the packet at position 0 of the queue) is
served. At the end of the round, the first packet reaches its destination. Packets
that arrive at the router are added to the end of the queue.

Packet Trades. At the beginning of each round all packets in the queue
are shifted one position ahead. A packet that enters the queue in this round,
occupies the first free (after the shift) position at the end of the queue. After
the shift, the packet that has reached position zero is served, while the other
packets in the router queue are simply waiting. These idle packets can engage
in trades. During each router round a fixed number 𝑏 of trading periods take
place. In each trading period the idle packets are matched randomly in pairs
with a predefined pairing scheme. Each packet pair can perform a trade, as
shown in Figure 5.2, provided the negotiation performed between them leads to

Figure 5.1: The network
model with the
flows, their pack-
ets, the router, and
the queue.

Figure 5.2: The state of a router queue
in two successive rounds. In
round t, two trades take place;
one between the packet pair
(p1,p2) and one between the pair
(p4,p7).

59

5.2 An Economy for Packets

an agreement. The way the trades take place at a microeconomic level between
paired packets resembles the models of [34, 55] where agents meet in random
pairs and can make trades.

Packet Delay. The delay 𝑑u� of a packet 𝑝 that starts at position 𝑘 of the zero-
based queue and does not make any trade is 𝑘 + 1 rounds (Figure 5.3a). If,
however, the packet engages in trades and buys a total of 𝑟u� router rounds and
sells 𝑟u� router rounds, then its delay 𝑑u�, including the time to be served, becomes
𝑑u� = 𝑘 + 1 + 𝑟u� − 𝑟u� rounds. A packet may have an upper bound 𝑑u�,max on its
delay; for delays larger than 𝑑u�,max the value of the packet becomes zero and the
packet will not voluntarily accept such delays (that is, it will not sell).

Details. The router operates in rounds and can serve one packet in each one.
All packets are assumed to be of the same size and no queue overflows occur.
In generating the random packet pairs, the use of predefined pairing reduces
the computational burden and avoids stable marriage problems. We make the
plausible assumption that flows with different QoS preferences are competing
for the network resources. We also make the assumption that the preferences of
each flow can be expressed with a utility function for its packets. Thus, packets
with different utility functions will, in general, co-exist in the router queue.

Packet Values. For each packet 𝑝 there is a flow-specific decreasing function
𝑣u�(𝑑) which determines the value of 𝑝, given its delay 𝑑. The value function
of each flow must be encoded onto each packet. Thus, its computational re-
quirements should be low in order not to overload the router. A class of simple
value functions are 𝑣u�(𝑑) = max{𝑣max − 𝑐u� ⋅ 𝑑, 0} where 𝑐u� is the cost per unit of
delay (Figure 5.3b). The value of a packet can be calculated anytime during the
packet’s journey via the 𝑣u�(𝑑) function.

In the PacketEconomy every packet has its compensatory price 𝑝. For prices lower
than 𝑝, the packet is ready to buy better queue positions and for prices higher than 𝑝 it
is ready to sell its position, provided that the extra delay will not cause it to exceed its
maximum delay limit.

Inventories. Every time a packet is delivered in time, wealth is created for
the flow that owns the packet. Each packet 𝑝 has an inventory 𝐼u�(𝑡) containing
two types of indivisible goods or resources; the packet delay 𝑑u�(𝑡) and the
money account 𝑎u�(𝑡). Note that delay bears negative value, whereas money
represents positive value. We assume positive integer constants 𝑠u�, 𝑠u� and 𝑠u�,
such that 𝑎u�(𝑡) ∈ {−𝑠u�, … , 𝑠u�} and 𝑑u�(𝑡) ∈ {0, … , 𝑠u�}. The inventory also contains
the current position 𝑝𝑜𝑠u�(𝑡) of the packet in the queue if it is waiting in the
queue. When the packet reaches its destination, the contents of the inventory
of the packet are used to determine its utility. This utility is then reimbursed
to the flow that owns the packet and a new packet of the same flow enters the
queue. An inventory is called admissible, if the delay of the packet does not
exceed its maximum delay. A packet would not agree to trade an admissible

60

Chapter 5: On Money as a Means of Coordination between Network
Packets

(a) Packet delay terminology for p4. (b) Two simple packet value functions.

Figure 5.3: Delays and Packet Values.

inventory state for a non-admissible one. We assume that all packets start with
an admissible inventory when they enter the queue.

Benefit and Utility. Every packet has two types of resources that bear value,
the packet value and the budget of a packet. We define the notion of the packet
benefit as the sum of the value of a packet plus/minus its budget. Then we use
the benefit concept to define the utility function of the packet. For rate-based
flows (see below), the utility of a packet is equal to its benefit. For window-
based flows the utility function is the benefit rate (benefit per round).

Trades. The objective of each packet is to maximize its utility. Thus, when
two packets are paired in a trading period, their inventories and their trading
strategies are used to determine if they can agree on a mutually profitable trade,
in which one packet offers money and the other offers negative delay. The
obvious prerequisite for a trade to take place is that both packets prefer their
post-trade inventories to their corresponding pre-trade inventories. For this to
be possible, there must be “surplus value” from a potential trade. In this case,
both packets can benefit, i.e., increase their utility, if they come to an agreement.

Flow Types and the Cost of Delay. The delay that a packet experiences
has a negative impact on its utility. The value is a non-increasing function
of the delay. Window-based flows employ a feedback-based mechanism, the
congestion window, which determines the maximum number of packets that
the flow may have in-flight. Every packet that is in-flight occupies one of the
available positions in the congestion window of a window-based flow. The more
a packet delays its arrival, the longer the following packet will have to wait to
use the occupied window position. Therefore, the impact of packet delays for
window-based flows is twofold; the decreased value of the delayed packet and
the reduced packet rate. On the other hand, for rate-based flows which submit
packets with some given rate, the only consequence due to packet delays is the
reduced packet value.

61

5.3 Equilibria with Monetary Trades

Assume a rate-based packet 𝑝 with balance 𝛼1 and delay 𝑑1 < 𝑑u�,max − 𝑑u�,
for some 𝑑u�. When a trade changes the delay from 𝑑1 to 𝑑2 = 𝑑1 + 𝑑u�, then this
also changes the value of the packet from 𝑣(𝑑1) to 𝑣(𝑑2). The difference between
these two values determines the compensatory price 𝜌 for the packet.

𝜌 = 𝑣(𝑑1) − 𝑣(𝑑2) = 𝑣(𝑑1) − 𝑣(𝑑1 + 𝑑u�) = 𝑐u�𝑑u� . (5.1)

At this price, the utility of the packet remains unchanged after the trade. A
packet would agree to sell for a price 𝜌u� > 𝜌, or to buy for 𝜌u� < 𝜌.

For window-based flows, however, the price estimation needs more attention.
Assume a window-based packet with delay 𝑑1 < 𝑑u�,max −𝑑u� and account balance
𝛼1. Before the trade, the utility (benefit rate) is 𝑟1 = (𝑣1 + 𝛼1)/𝑑1. If the packet
agrees to trade its position and to increase its delay by 𝑑u�, then the utility is
𝑟2 = (𝑣2 + 𝛼2)/𝑑2. Then, by setting 𝑟1 = 𝑟2 we obtain the compensatory price 𝜌
for the trade.

𝑣1 + 𝛼1

𝑑1
=

𝑣2 + 𝛼2

𝑑2
⇒

𝑉 − 𝑐u�𝑑1 + 𝛼1

𝑑1
=

𝑉 − 𝑐u�(𝑑1 + 𝑑u�) + (𝛼1 + 𝜌)
𝑑1 + 𝑑u�

⇒

𝜌 = (𝑉 + 𝛼1)
𝑑u�

𝑑1
. (5.2)

The above expression for the price ensures that the utility function of the packet
remains unchanged. A packet would agree to sell its position, for a price 𝜌u� > 𝜌,
or to buy a position (𝑑u� < 0) for 𝜌u� < 𝜌. Unless otherwise specified, the final
trading price when a trade takes place will be the average of the 𝜌u� of the seller
packet and 𝜌u� of the buyer packet. We illustrate the PacketEconomy approach
in a representative scenario.

5.3 Equilibria with Monetary Trades
A Representative Scenario. We examine a simple scenario that produces an
interesting configuration. It consists of a set of 𝑁 window-based flows 𝑓u�, for 𝑖 ∈
{1 … 𝑁}, each with a constant window size 𝑤u�, and ∑u� 𝑤u� = 𝑞. When a packet is
served by the router it is immediately replaced by an identical packet submitted
by the same flow. This is a simplifying but plausible assumption. In reality,
when a flow packet arrives at its destination, a small size acknowledgement
packet (ACK) is submitted by the receiver. When the sending flow receives the
ACK it submits a new identical packet that immediately enters the queue. We
assume 𝑏 = 1 trading period per round but in general 𝑏 can be any integer 𝑏 > 0.

Failure states. For each packet, there is a small probability 𝑝u� for an extra
delay of 𝑑u� rounds, where 𝑑u� is a discrete random variable in {1, 2, … , 𝑞−1}. These

62

Chapter 5: On Money as a Means of Coordination between Network
Packets

delays correspond to potential packet failures of real flows, and occur between
the service of a packet and the submission of its replacement. By convention,
the delay 𝑑u� is added to the delay of the packet that has just been served. If more
than one packets enter the queue at the same time (synchronized due to delays),
their order in the queue is decided upon uniformly at random. A packet that
does not participate in any trade and does not suffer delay due to failure will
experience a total delay of 𝑞 rounds.

Packet states and strategies. The state 𝜏u�(𝑡) of a packet 𝑝 in round 𝑡 is
a pair 𝜏u�(𝑡) = (𝐼u�(𝑡), 𝑟𝑒𝑙u�(𝑡)), where 𝐼u�(𝑡) is the inventory of the packet and
𝑟𝑒𝑙u�(𝑡), which is meaningful only in failure states, is the remaining number of
failure rounds for the packet. The state of all packets of the economy in round 𝑡
determines the state of the whole economy 𝜏(𝑡) = ∏u�−1

u�=0 𝜏u�(𝑡). From a packet’s
point of view, a trade is simply an exchange of its inventory state (budget, delay
and position) with a new one. Consequently, a pure strategy of a packet is a
complete ordering of the possible states of its inventory. In each round, the
packets that are waiting move by default one position ahead and, thus, enter a
new inventory state. We assume that the packet ignores the impact of its state
and strategy on the state of the packet population. In every trading period the
packet assumes the same stationary state of the economy.

Definition 1 Let 𝜏(𝑡) be the state of the economy in round 𝑡.

Lemma 3 𝜏(𝑡) is an ergodic Markov chain.

Proof 3 Assume 𝑏 = 1 trading period per round. In each round, the economy moves to
a new state with transition probabilities that depend only on the current state and the
strategies of the packets. Let 𝜎u� be a pure strategy of each packet 𝑝 of a flow and 𝜎 be a
pure strategy profile of the whole economy. Then, there is a corresponding transition
probability matrix 𝑃u� for the economy. Let 𝜎u� be a mixed strategy profile of the whole
economy. Then the corresponding transition probability 𝑃u�u� of the economy for 𝜎u� is
an appropriate convex combination of the transition matrices of the supporting pure
strategies. In case of multiple trading periods per round (𝑏 > 1), the economy makes 𝑏
state transitions per round.

The number of potential states for a packet is finite and, consequently, the number of
states for the whole economy is also finite.

Definition 2 A zero state 𝜏0 is a state of the economy in which all packets have zero
budget and each packet 𝑝 has delay 𝑑u�(𝑡0) = 𝑝𝑜𝑠u�(𝑡0) + 1, where 𝑡0 is the current round
of the router.

Assume that in round 𝑡 the packet at position 0 fails for 𝑞 − 1 rounds, in round 𝑡 + 1
the next packet at position 0 fails for 𝑞 − 2 rounds etc. Then after 𝑞 rounds all new

63

5.3 Equilibria with Monetary Trades

packets will simultaneously enter the queue. Each packet will have zero budget and
by definition their ordering will be random. This also means that for each packet 𝑝,
𝑑u�(𝑡) = 𝑝𝑜𝑠u�(𝑡) + 1. Thus, in round 𝑡 + 𝑞 the economy will be in a zero state. The
probability for this to happen is strictly positive and thus each zero state 𝜏0 is recurrent.
Since the number of states of the economy is finite, the states that are attainable from zero
states like 𝜏0 form a (finite in size) class of irreducible states. Moreover, each zero state
is aperiodic, and thus each of the states of the class of attainable states is also aperiodic.
It is known that any finite, irreducible, and aperiodic Markov chain is ergodic.

Lemma 4 For each pure strategy profile 𝜎 of the economy, there is a unique stationary
distribution 𝜋u� of the economy.

Proof 4 For each pure strategy profile 𝜎 , the Markov chain of the economy has a finite
number of states, is aperiodic and ergodic. Thus, it must have a unique stationary
distribution 𝜋u� (see for example [70, Theorem 7.7]).

An interesting argument which can now be applied is that given the stationary
distribution of the economy, each trading period becomes a finite state game.

Lemma 5 For every idle packet, each trading period of the economy corresponds to a
finite strategic game.

Proof 5 Let 𝜎u� be a mixed strategy of the whole economy and 𝑃u�u� the corresponding
transition matrix of the Markov chain of the economy. Note that 𝑃u�u� is a convex
combination of the transition matrices 𝑃u� that correspond to the pure strategies 𝜎 in the
support of 𝜎u�. Moreover, let 𝜋u�u�

be the stationary distribution of the Markov chain for
transition matrix 𝑃u�u�. We assume that the utility of each player (packet) for the profile
𝜎u� is the expected value of the player in the stationary distribution 𝜋u�u�

. In this way, we
obtain for each trading period a finite game where every packet of the queue is a player.
The strategy of the packet is its trading strategy.

This leads us to the following theorem, which holds under plausible assump-
tions.

Theorem 1 A NE exists where packets perform trades.

Proof 6 Since each trade is a finite game, the classic theorem of Nash [74, 75] assures
that there is at least one mixed Nash equilibrium. However, the state of the economy
where no packet participates in trades is a trivial NE where no trades take place. We have
to show that there at least one more NE. A nice property of the current proof technique
(due to Gintis [34]) is that we can impose conditions on the equilibrium point. We can
assume a restricted version of the economy, where each packet has a non-empty pure

64

Chapter 5: On Money as a Means of Coordination between Network
Packets

trading strategy set. In a sense each packet is enforced to accept at least some types of
profitable trades every time it is possible.

In the restricted economy each round is again a finite game and, consequently, it has
a mixed NE. This time the NE has trades assuming that packets with different utility
functions exist in the population. Assume now a NE state of the restricted game in
the original unrestricted economy. It can be shown that, assuming appropriate utility
functions for the packets, if we relax the forced-trade restriction, then no packet has an
incentive to unilaterally change its strategy. That is, there exists a NE with trades for
the original PacketEconomy.

Pipelined Shuffling. A core operation of the PacketEconomy is the random
pairing of the packets that takes place in each trading period to generate the
trading pairs. We present a new parallel algorithm that can support the random
pairing procedure in real time. The new algorithm (Algorithm 6) is a parallel,
or better, a pipelined version of the random shuffling algorithm of Fisher-Yates,
which is also known as Knuth shuffling [112, 56]. The Fisher-Yates shuffling
technique was introduced in [30], later Durstenfeld [23] proposed a correspond-
ing 𝑂(𝑛) algorithm, and finally Knuth [56] popularized Durstenfeld’s algorithm.
The random shuffling of Fisher-Yates is a simple and elegant way to generate
a random shuffle with a single pass over an array of items. We call the new
algorithm Pipelined Shuffling. Its core is a pipeline of 𝑞 instances 0, 1, … , 𝑞 − 1
of the Fisher-Yates algorithm. At time 𝑡, instance 𝑘 is at step 𝑡 + 𝑘 mod 𝑞 of the
random shuffling algorithm.

Algorithm 6 Pipelined Shuffling
1: procedure Shuffle(int[] a)

for i from 0 to q-2 do {
j = random int in 𝑖 ≤ 𝑗 ≤ 𝑞 − 1;
exchange a[j] and a[i]}

2: end procedure
1: procedure ParallelShuffle(int[][] A)

for i from 0 to q-1 do in parallel {
processor i: wait for i periods;
processor i: while (true) {Shuffle(A[i]);}

2: end procedure

Theorem 2 The Pipelined Shuffling algorithm delivers a random shuffle every 𝑂(1)
parallel time steps on a 𝑞 processors EREW PRAM.

Proof 7 A running instance of the Pipelined Shuffling algorithm contains 𝑞 indepen-
dent instances of the basic Shuffle algorithm. Each Shuffle instance is executed by one

65

5.3 Equilibria with Monetary Trades

of the 𝑞 processors. From the pseudocode of the algorithms we can conclude that each
instance of the Shuffle algorithm is at a different round of its main loop. Moreover, each
instance of the Shuffle algorithm has its own vector of 𝑞 memory positions to store its
current permutation and, thus, there is no possibility of two processors concurrently
accessing the same memory position. In each round, one Shuffle instance completes its
execution and delivers a random permutation of the 𝑞 numbers {1, 2, … , 𝑞}.

The PacketEconomy packet pairing algorithm uses the delivered random per-
mutation to generate a random pairing in 𝑂(1) parallel time on ⌈𝑞/2⌉ processors.

Theorem 3 A random packet pairing can be generated every 𝑂(1) parallel time on a 𝑞
processors EREW PRAM.

Proof 8 From Theorem 2 we know that a random permutation can delivered with
Pipelined Shuffling every 𝑂(1) parallel steps. The algorithm to generate a random
pairing from it requires ⌈𝑞/2⌉ parallel processors and works as follows. A separate vector
of 𝑞 memory positions is used to store the final pairing. Each processor 𝑖 of the involved
processors reads the values 𝑥2u� and 𝑥2u�+1 of the positions 2𝑖 and 2𝑖+1 of the permutation,
respectively, and then writes into position 2𝑖 of the pairing vector the value 𝑥2u�+1 and
into position 2𝑖 + 1 the value 𝑥2u�. If 𝑞 is an odd number, then one position will not be
paired. The contents of the final vector specify for each position the corresponding paired
position.

The Scheduling Problem. The underlying algorithmic problem of the Packet-
Economy is a scheduling problem of network packets. From the router’s point of
view, this problem is a single machine scheduling problem with a max weighted
total wealth objective.

Definition 3 Max-Total-Wealth Scheduling (MTW). A set of 𝑛 jobs 𝑗u�, for 𝑖 = 1, … , 𝑛.
Job 𝑗u� has processing time 𝑝u�, release date 𝑟u�, deadline 𝑑u� and weight 𝑤u�. Let 𝑐u� be the
completion time of job 𝑖 in a schedule. The objective is to find a non-preemptive schedule
that maximizes the total wealth 𝑊 = ∑u� 𝑤u� ⋅ max(𝑑u� − 𝑐u�, 0).

The release date 𝑟u� is the time when packet 𝑖 enters the queue and the deadline
𝑑u� is the time when the value of the packet becomes zero. For MTW on a
network router the following assumptions hold: a) The queue discipline is work-
preserving, meaning a non-empty router is never left idle, b) the number of
packets in the queue at any time is bounded by a constant (the maximum queue
size), and c) the packet sizes may differ by at most a constant factor. In this work,
we assume that all packets are of the same size.

The complexity of the MTW problem depends on the assumptions made.
Without deadlines, i.e., without a limit on the delay of each packet, an optimal

66

Chapter 5: On Money as a Means of Coordination between Network
Packets

schedule can be obtained by applying a greedy rule like Smith’s rule [98]. In
particular, the router may simply serve in each round the packet with the largest
cost factor 𝑐u�.

Theorem 4 The MTW problem without deadlines can be optimally solved in polynomial
time.

This holds even for the on-line version of the problem where the router knows
only the packets in its queue; the greedy rule gives a 1-competitive algorithm.

Theorem 5 There is 1-competitive algorithm for MTW without deadlines.

However, in realistic scenarios with IP packets, there are deadlines. Common IP
packets have a time-to-live (TTL) field. In TCP, a packet that is not acknowledged
within the specified time-out period is considered lost. The scheduling problem
for packets with deadlines can be solved off-line as a linear assignment problem
(LAP), where packets are assigned to time-slots (rounds). This approach is used
in [36] for a min-weighted-tardiness problem that is related to the MTW problem.

Theorem 6 The MTW problem with deadlines can be optimally solved in polynomial
time.

However, due to the on-line nature and the finite queue size of the Packet-
Economy router, the above conventional scheduling algorithms do not seem to
naturally fit the MTW problem of the PacketEconomy. Especially for window-
based flows, where packet transmission is a closed loop, the order in which the
queued packets are served influences, if not determines, the next packet that
will enter the queue. Thus, even the on-line assumption may not be appropriate.
A different approach to study the scheduling problem of the PacketEconomy
is to consider the (average) packet rate of the flows, as shown in the following
example.

Example 1 Assume a scenario with window-based flows and 5 economy packets and 5
business packets. There is a deadline of 40 rounds on the maximum delay of the economy
packets. Moreover, all business packets have to be treated equally. The same holds for
the economy packets. Consider the scenario where each economy packet will be served
with a rate of 1/40 packets/round and delay of 40 rounds and the business flows share
the remaining bandwidth; each business packet is served at a rate of 7/40 packets/round
and delay 40/7 rounds. This is an upper bound on the rate of total wealth for the router
for this scenario.

67

5.4 The Effect of Trades

5.4 The Effect of Trades
The NE of the representative scenario shows that, in principle, money can be
used at a microeconomic level to coordinate network packets. By definition, the
flows of the scenario can only benefit through the use of money; each trade is a
weak Pareto improvement for the current state of the economy. In this section
we further examine the effect of trades.

In the PacketEconomy, each packet can increase its utility by making trades.
To show the potential of the approach, consider a packet of maximum priority
that pays enough to make any trade that reduces its delay. In the analysis, we
will assume that the probability of packet failures is very low, and thus ignore it.
We focus on window-based flows, present an exact calculation for the average
delay of this packet and then derive simpler, approximate bounds.

Lemma 6 The average delay 𝐸[𝑑] of the packet is

𝐸[𝑑] =
u�

∑
u�=1

𝑠 (
1

𝑞 − 2)
u�

(𝑠 − 1)
(𝑞 − 2)!

(𝑞 − 𝑠 − 1)! . (5.3)

Proof 9 Let 𝑟𝑎𝑛𝑑(𝐿, 𝑈, 𝑠) be a uniformly random integer in {𝐿, 𝐿 + 1, ..., 𝑈}\{𝑠} and
𝑝𝑜𝑠(𝑝) the current position of packet p. Then, the probability 𝑃𝑟[𝑑 > 𝑠] is

=
u�

∏
u�=1

𝑃𝑟[𝑟𝑎𝑛𝑑(1, 𝑞 − 1, 𝑝𝑜𝑠(𝑝)) ≥ 𝑠 − 𝑘 + 1] =
𝑞 − 𝑠 − 1

𝑞 − 2 ⋅
𝑞 − 𝑠
𝑞 − 2 ⋯

𝑞 − 2
𝑞 − 2 ⇒

𝑃𝑟[𝑑 > 𝑠] = (
1

𝑞 − 2)
u�

⋅
(𝑞 − 2)!

(𝑞 − 𝑠 − 2)! , and

𝑃𝑟[𝑑 = 𝑠] = 𝑃𝑟[𝑑 ≤ 𝑠] − 𝑃𝑟[𝑑 ≤ 𝑠 − 1] = (
1

𝑞 − 2)
u�

(𝑠 − 1)
(𝑞 − 2)!

(𝑞 − 𝑠 − 1)! .

Applying the definition of the expected value completes the proof

𝐸[𝑑] =
u�

∑
u�=1

𝑠 (
1

𝑞 − 2)
u�

(𝑠 − 1)
(𝑞 − 2)!

(𝑞 − 𝑠 − 1)! .

Lemma 7 Let 𝑋u�
min be the minimum of 𝑛 > 0 discrete uniform random variables (RV)

in [𝐿, 𝑈] and 𝑋u�
min be the minimum of 𝑛 continuous uniform RV in [𝐿, 𝑈]. Then, for

the average values of 𝑋u�
min and 𝑋u�

min, it holds that

𝐸[𝑋u�
min] ≤ 𝐸[𝑋u�

min] ≤ 𝐸[𝑋u�
min] + 1 . (5.4)

68

Chapter 5: On Money as a Means of Coordination between Network
Packets

Proof 10 Assume a random variable 𝑋u� that is uniformly distributed in [𝐿, 𝑈], where
𝐿 and 𝑈 are integers, such that 𝐿 < 𝑈. Let 𝑋u� be a random variable that is calculated
from 𝑋u� in the following way:

𝑋u� = 𝐿 + 𝑖, where 𝑖 is such that ∶ 𝐿 + 𝑖 ⋅ 𝐴 ≤ 𝑋u� ≤ 𝐿 + (𝑖 + 1) ⋅ 𝐴 ,

where 𝐴 = u�−u�
u�−u�+1 . The random variable 𝑋u� corresponds to a uniform discrete random

variable in {𝐿, 𝐿 + 1, … , 𝑈}. The absolute difference 𝑋u� − 𝑋u� is not larger than one.
Consequently, the absolute difference between the minimum 𝑋u�

min of 𝑚 draws of 𝑋u� and
the corresponding minimum 𝑋u�

min of the 𝑚 values of 𝑋u� is also not larger than one. The
same bound holds for the difference between the expected values of the minimums after 𝑘
draws. Thus, we obtain that

𝐸[𝑋u�
min] − 1 ≤ 𝐸[𝑋u�

min] ≤ 𝐸[𝑋u�
min] + 1 . (5.5)

Moreover, note that 𝑘 >= 1, the average minimum of 𝑘 random draws will be in the
lower half of the interval [𝐿, 𝑈], that is in [𝐿, u�+u�

2]. Real values in this interval are on
average rounded to smaller integer values in the above rounding procedure for 𝑋u� to
𝑋u�. Thus, the average discrete minimum will not be larger than the average continuous
minimum. Thus,

𝐸[𝑋u�
min] ≤ 𝐸[𝑋u�

min] ≤ 𝐸[𝑋u�
min] + 1 . (5.6)

Lemma 8 The average delay of the packet does not exceed
−1+2u�+2√2u�(u�−2)

2u� . For 𝑏 = 1
the bound is 1

2 + √2(𝑞 − 2).

Proof 11 A packet that enters at position 𝑞−1 has been served when it advances at least
𝑞 positions. Note that each random trading partner corresponds to a uniform random
number in [1, 𝑞 − 1]. To admit a more elegant mathematical treatment we prefer the
continuous distribution. Lemma 7 makes this possible.

Assume that a packet has just entered the queue at position 𝑞 − 1. Let 𝑏 be the
number of trading periods per router round. Assume that the packet spends at least 𝑘
rounds in the queue until it reaches position 1. During these 𝑘 rounds the packet will
make 𝑏𝑘 random draws and will make 𝑘 single position advancements. From Lemma 9
we obtain that the average value of the minimum of the 𝑏𝑘 random draws is

1
𝑏𝑘 + 1(𝑞 − 2) .

Lemma 9 Let 𝑋1, 𝑋2, … , 𝑋u� be continuous uniform random variables in [0, 𝑈] and
let 𝑋min = minu�=1,…,u� 𝑋u�. Then 𝐸[𝑋min] = 1

u�+1𝑈.

69

5.4 The Effect of Trades

Proof 12 The probability distribution of each continuous uniform random variable 𝑋u�
is 𝐹u�u�

(𝑥) = u�
u� . The probability distribution of the minimum 𝑋min is

𝐹u�min
(𝑥) = 1 −

u�
∏
u�=1

(1 − 𝐹u�u�
(𝑥)) .

Now, applying the definition of the expected value function completes the proof of
Lemma 9.

Note that the average number of rounds and draws until it achieves its best draw is (𝑘+1)
and (𝑏𝑘 + 1)/2, respectively. We will add one to the value of the average minimum draw,
because the minimum position that can be traded is position 1. Position 0 is the one that
is currently being served.

Now, assume that after the 𝑘 rounds and 𝑏𝑘 draws the packet advances for ℎ additional
rounds until it reaches position 1. From position 1 it needs a final round to proceed to
position 0 and be served. Thus, the total delay of the packet is 𝑘 + ℎ + 1, and

1
𝑏𝑘 + 1(𝑞 − 2) + 1 − (𝑘 + 1)/2 − ℎ − 1 ≤ 0 .

We solve for 𝑘 and obtain that the larger of the two roots of k is

𝑘 =
−1 − 𝑏 − 2𝑏ℎ + √(1 + 𝑏 + 2𝑏ℎ)2 + 4𝑏(2𝑞 − 5 − 2ℎ)

2𝑏 . (5.7)

The total delay 𝑘+ℎ+1 is minimized at ℎ = (1−𝑏)/(2𝑏). Substituting ℎ = (1−𝑏)/(2𝑏)
in Equation 5.7 gives that the minimum value of 𝑘 + ℎ + 1 is

𝑘 + ℎ + 1 =
𝑏 − 1 + 2√2𝑏(𝑞 − 2)

2𝑏 .

The average delay cannot be larger then the above value. This completes the proof of
Lemma 8.

The above lemma can be generalized to the case where only one packet in
every 𝑐 > 0 packets in the queue is ready to sell its position. We simply assume
𝑏/𝑐 trading periods per round. Then, the average delay of the business packet is
not larger than 1 − (𝑐/2) + √2𝑐(𝑞 − 2). Similarly, we can show:

Lemma 10 The average delay of the packet is at least
−1+2u�+√1−8u�+4u�u�

2u� . For 𝑏 = 1 the
bound is (1/2) + √4𝑞 − 7.

70

Chapter 5: On Money as a Means of Coordination between Network
Packets

(a) The exact average delay (inner line)
and the lower and upper bounds on
the average delay.

(b) Experimental measurement of the
delay for the cases of one business
packet and five business packets.

Figure 5.4: Delay of the business packet with respect to the queue size.

Proof 13 Assume 𝑘 + 1 rounds with 𝑏 = 1. The continuous average minimum of 𝑘
rounds with 𝑏 trading periods is (𝑞 − 2)/(𝑏𝑘 + 1). From Lemma 7 we obtain that the
average discrete minimum is at least (𝑞 − 2)/(𝑏𝑘 + 1) − 1. We will add one to this
number because the minimum possible trade is position 1. In the best case the minimum
is achieved with the first draw. In the remaining 𝑘 rounds the packet will be (in any case)
shifted by 𝑘 − 1 positions (in each round except the round when it entered the queue).
This number of simple steps/shifts is subtracted from the min. Finally, a delay of one
round is needed to serve the packet, when it arrives at position 0. Consequently,

(
1

𝑏𝑘 + 1(𝑞 − 2) − 1) + 1 − (𝑘 − 1) − 1 ≤ 0 . (5.8)

From the above inequality and the fact that 𝑘 is positive we obtain

𝑘 ≥
−1 + √1 − 8𝑏 + 4𝑏𝑞

2𝑏 .

Using 𝑏 = 1 the expression is simplified to 𝑘 ≥ −(1/2) + √4𝑞 − 7. Thus the average
delay is at least

𝑘 + 1 ≥
1
2 + √4𝑞 − 7 .

This lemma too, can be generalized to the case where only one packet in
every 𝑐 > 0 packets in the queue is ready to sell its position. In this case the
average delay of the business packet is not less than 1

2(2 − 𝑐) + 1
2√𝑐2 − 8𝑐 + 4𝑞𝑐.

In Figure 5.4, analytical and experimental results for the delay of the business
packet are presented.

71

5.5 Conclusions

5.5 Conclusions
We presented an economy for network packets and showed the existence of NE
where money circulates to the benefit of the flows. The basic computational
step of the PacketEconomy can be executed in 𝑂(1) parallel time on fairly sim-
ple multi-core hardware, making it appropriate for modern network router
demands.

There are several other issues that have to be addressed for such a model to
be of practical importance. For example, a greedy flow may submit economy
packets to the network simply to collect money. A realistic economic model
has to anticipate such scenarios and address them with appropriate rules. One
approach could be to have the router restricting the final budget of any packet to
be non-positive, or more effectively, impose router-entry costs on every packet
depending on the current load.

Overall, we examined how money can be used at a microeconomic level as a
coordination tool between network packets and we believe that our results show
that the PacketEconomy approach defines an interesting direction of research
for network games.

72

CHAPTER 6

Implementing PacketEconomy:
Distributed Money-based QoS in

OMNET++

6.1 Introduction
The Internet provides the infrastructure for multiple independent network traffic
flows. This infrastructure and its resources are limited and shared between these
flows, each of which attempts to optimize its own performance. As a result of en-
tities sharing a limited common resource, with individual optimization targets,
competition arises between these flows. Thus, a game-theoretic approach can be
used to examine the issues that arise, an approach which has been taken in sev-
eral works with some of the early ones being [57, 85], and overviews of which are
presented in [4, 77]. Congestion games in particular have also been addressed,
with focus on the TCP/IP protocols, in [3, 32, 25, 93]. However, in previous
approaches, the interaction between flows has been very limited and mainly
indirect. Each flow typically can only control the amount and timing of the data
it sends. This in turn affects the shared network resources available for both
this and other flows. In game theoretic terms, the current strategies available
to flows can only control the size of packets and the rate of their transmission.
In this work, we present an implementation of PacketEconomy, a distributed
quality of service (QoS) mechanism for network packets, aiming at allowing
high performance, network-wide, fine-grained, user-controlled QoS presented
in Chapter 5. PacketEconomy comprises two aspects, firstly allowing flows to
formulate their strategies in a more direct and clear way by using packet utility
functions to express and packet budgets to “finance” their QoS requirements.

73

6.2 Related Work

Secondly, it allows the flows to interact while waiting in router queues, providing
opportunities for mutually beneficial exchanges between packets. Additionally,
we implement the platform in a non-intrusive way, allowing for gradual and
opt-in participation, without affecting flows which do not participate in the
PacketEconomy.

In this work, we present a realistic implementation of PacketEconomy, within
the OMNET++ discrete-event simulator [106, 107], using the INET network
simulation library [108] and the experimental evaluation of the implementation.

6.2 Related Work
The general problem addressed by our work is that of providing QoS for network
flows. Within that context, we focus on solutions which work when assuming
selfish competitive flows, instead of cooperating ones, since in practice the flows
are created by independent and selfish end-users. Our proposal comprises using
money and packet trades as a coordination mechanism at the microeconomics
level, described in detail in Chapter 5.

If in the problem addressed the game-theoretic aspects are ignored, then
PacketEconomy still provides a simple, fast and hardware acceleratable solution.
These characteristics are not merely an advantage of our solution, but are hard
requirements imposed on any potential solution by the nature of the problem,
i.e. processing of large numbers of packets with minimal overheads on routers
with limited resources. Other works trying to solve the same problem include
[48, 50, 51, 62, 114, 59, 60] with a good overview presented in [101], however
it is important that non-decentralized, typically computationally inefficient or
complex-to-implement algorithms are avoided.

Another aspect concerns the role of the service providers, which PacketEcon-
omy remains agnostic of, such that the providers implementing the mechanism
in their routers are relegated to “dumb pipes” with no strategic interests (as
far as providing the service to their users is concerned) while the strategic in-
teraction takes place between network end-users. On the other hand, some
approaches [8, 2, 63] model the problem of QoS from the standpoint of efficiency
or performance for network service providers, a problem certainly interesting
and important, but which is not necessarily aligned with the interests of the
end-users.

If QoS is to be performed, a means of dynamically modifying the end-to-end
delay is needed, which affects both rate- and window-based flows. End-to-end
delay is the sum of transmission delay (the time taken to transmit the data of
a packet over the network links, which relates to link bandwidth), propaga-
tion delay (the time taken for the signal to propagate between link endpoints,

74

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

which relates to the physical medium and the distance of the link), processing
delay (the time taken within routers to process the packet headers), and queu-
ing delay (the time spent waiting in router queues). Transmission delay can be
changed by physically changing the network and thus changing the bandwidth
available, however this is not something that can be varied dynamically. Prop-
agation delay is also a physical property and cannot be changed dynamically.
Processing delay is also rather inflexible to change, since it is a required step
for every packet passing through a router. The only part of end-to-end delay
which remains and which can relatively easily be varied dynamically, is queuing
delay. By manipulating the order in which packets are served, it is possible
to increase or decrease queuing time, and as an extension, end-to-end delay.
Moreover, in highly congested networks, where QoS is more needed, queuing
delay represents a larger part of the total end-to-end delay. Since packets spend
a significant portion of their time waiting in packet queues within routers, we
claim that this would be an ideal place to perform coordination and provide
QoS. A common alternative formulation considers the routing problem [15],
i.e. not deciding the order of service in queues but deciding on which output
queue and thus effectively which network path to take to implement QoS. This
framing is also often coupled with the network service provider-centric view
of the problem. In this case, taking different routes impacts player utility by
experiencing different congestion levels, delays and bandwidth limitations over
different network links. However, we would like to provide end-to-end, user-
controlled QoS, but typically end-users are not able to control routing decisions
in routers. Thus, we expect that our focus on scheduling in the router queues,
maintaining the ability to affect both delay and throughput, is more amenable
to a realistic implementation.

We reinforce our commitment to the importance of realism by providing a
proof-of-concept implementation of our solution in OMNET++. This implemen-
tation consists of additional logic at the router and the end-points, operates on
IPv6 flows and utilises an additional extension IPv6 header on each packet. We
chose to make these assumptions and impose limitations on our implementa-
tion in order to maintain practicality. In contrast, other approaches result in
simpler solutions, but are coupled with the disadvantages of being less realistic
and harder to implement, due to the abstractions performed which fail to take
into account practical concerns.

We have also taken into account the fact that changes in network infrastruc-
ture are slow, especially where non-programmable routers are used. To address
this issue, we have designed the mechanism in such a way that PacketEconomy
can offer advantages even if only a part of the network participates (end-users
or routers). Thus, our solution allows for a piecemeal introduction, taking ad-
vantage of the new features where available, and falling back to the default

75

6.3 Implementation

implementation where not. More specifically, non-participating end-users will
experience service as if no QoS was being applied to their packets, although
they do have a positive incentive to participate. Additionally, different segments
of a network path may not support our solution (non-PacketEconomy routers),
but even if only a subset of the segments does, then, any packet travelling within
those segments will take advantage of our solution within them. This contrasts
with solutions which require a total switch to the alternative mechanism.

6.3 Implementation
In this section we describe the adaptation of the theoretical model described
in Chapter 5 to an implementation based on the OMNET++ discrete-event
simulator.

6.3.1 Packet Utility Functions
The theoretical model described in Chapter 5 uses linear packet utility functions
as examples, but in general any positive and monotonically decreasing function
can be used. We have generalized the function definition to a larger class of
functions to allow flows to express more complex QoS requirements and also to
illustrate the generality of our overall approach. For our experiments, we have
decided on a fixed form for the packet utility functions with three parameters.
The utility function is defined as:

𝑑u�(𝑡) =

⎧{{{
⎨{{{⎩

𝑏 − 𝑎𝑡u� 0 ≤ 𝑡 <
u�
√𝑏

𝑎

0 𝑡 ≥
u�
√𝑏

𝑎

with 𝑏 ≥ 0 and 𝑎, 𝑐 > 0 (6.1)

where, 𝑡 is the time which has passed since the packet has been sent, and 𝑎, 𝑏, 𝑐
are the parameters which define the starting point (at 𝑡 = 0) for the utility as
well as the rate of loss of utility as time passes. Once the utility reaches zero,
at 𝑡 = 𝑡0, it decreases no more. The described utility function is monotonically
decreasing over 𝑡 ≥ 0. We have selected this function form because it allows for
easy calculation of the 𝑡0 point, it also allows sufficient flexibility in defining the
utility function, it only requires three parameters and for specific values of 𝑐
it can be efficiently implemented directly in hardware. Although any number
of parameters can be used, since the parameters need to be carried along with
the packet, a trade-off between flexibility and network overhead needs to be

76

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

Figure 6.1: Example packet utility functions. The point where the functions
meet the 𝑡 axis is 𝑡0.

made. A few examples of the packet utility functions which are possible using
this function form are presented in Figure 6.1.

6.3.2 Compensation Price
When two packets perform a trade, each one has to specify its bid or ask price,
depending whether it is a buyer or seller. In order to specify this price, each
packet needs to calculate how much utility will be gained or lost if the trade
takes place. An analysis on the optimal compensation prices or rate-based
and window-based flows when linear utility functions are used is presented in
Chapter 5. This work generalizes which kinds of utility functions can be used
in the manner described by Equation 6.1. Consider a packet which, without
participating in the trade, has delay 𝑑u�(𝑡1) and a balance of 𝑚u�(𝑡1), where 𝑡1 ≤
𝑡0, 𝑡2 ≤ 𝑡0. If it participates in the trade it will receive a new estimated delivery
time 𝑑u�(𝑡2) and a balance 𝑚u�(𝑡2) = 𝑚u�(𝑡1) + 𝜌. For rate-based flows, the total
benefit must be the same or higher, thus the compensation price 𝜌 becomes:

𝑑u�(𝑡1) + 𝑚u�(𝑡1) = 𝑑u�(𝑡2) + 𝑚u�(𝑡2) ⇔
𝑏 − 𝑎𝑡u�

1 + 𝑚u�(𝑡1) = 𝑏 − 𝑎𝑡u�
2 + 𝑚u�(𝑡1) + 𝜌 ⇔

𝜌 = 𝑎(𝑡u�
2 − 𝑡u�

1) (6.2)

As described in Chapter 5, window-based flows have to wait for an acknowl-
edgement of receipt of a packet in order to send another packet. Therefore,
delaying a packet not only affects this packet’s benefit but also the next one’s
which will also be additionally delayed. Taking this behaviour into account, for
window-based flows the total benefit rate needs to be the same or higher, thus

77

6.3 Implementation

Figure 6.2: Viewed as a service, PacketEconomy requires priority and available
budget as inputs. Optionally, network and utility statistics feedback
can be used to deduce utility function parameters.

the compensation price is:

𝑑u�(𝑡1) + 𝑚u�(𝑡1)
𝑡1

=
𝑑u�(𝑡2) + 𝑚u�(𝑡2)

𝑡2
⇔

𝑏 − 𝑎𝑡u�
1 + 𝑚u�(𝑡1)

𝑡1
=

𝑏 − 𝑎𝑡u�
2 + 𝑚u�(𝑡1) + 𝜌

𝑡2
⇔

𝜌 =
𝑏(𝑡2 − 𝑡1) + 𝑎(𝑡1𝑡u�

2 − 𝑡u�
1𝑡2) + 𝑚u�(𝑡1)(𝑡2 − 𝑡1)

𝑡1
(6.3)

It follows that 𝜌 < 0 when the packet is a buyer and 𝜌 > 0 when it is a seller.

6.3.3 PacketEconomy as a Service
PacketEconomy provides QoS as a service to the endpoint users. To do so, it
firstly requires one or more intermediate routers which are able to perform
trades. These routers do not need any additional configuration from the end-
points and they can function completely independently, while the PacketEcono-
my mechanism itself is also stateless. Access to an accurate time source is useful
but not required. Secondly, at the endpoints, besides the necessary modules,
two parameters must be given, presented in Figure 6.2. The mandatory parame-
ters are the priority values for each flow as well as the available budget. The
priority parameter can be given directly by the user or can be derived automat-
ically from a higher level configuration. The budget needs to be either given
by the user or it can be retrieved, via an appropriate network service, directly
by the budget provider, usually the ISP. Optionally, PacketEconomy can use
feedback from previous traffic as well as the given priority and budget in order
to deduce the appropriate utility function parameters.

78

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

Figure 6.3: Overview of the operation of PacketEconomy. The PacketEconomy
hook attaches and detaches the custom extension header at the end-
points. State is maintained to be used in deciding which utility func-
tion parameters and budget value to use. Routers perform trades
statelessly, directly rejecting pairs non-PacketEconomy pairs. Feed-
back is sent from the receiving endpoint B to the original sending
endpoint A to inform its parameter selection.

79

6.3 Implementation

6.3.4 Operation Overview
The overall PacketEconomy operation is presented in Figure 6.3. At the sending
endpoint A, a user decides upon the high-level QoS requirements for flows,
which can be predefined, based on application profiles, or have otherwise pro-
vided default values, in the form of flow priorities. These are then first converted
to relatively static delay and/or throughput QoS requirements. The require-
ments in turn are then converted to more dynamic utility function parameters
(𝑎, 𝑏, 𝑐) as well as a packet budget. The parameters and budget are used when
the flow upon which QoS is applied sends an IPv6 packet. Before being sent
from the sending endpoint A, a PacketEconomy hook handles the normal IPv6
packet and attaches a PacketEconomy extension header containing the utility
function parameters and related PacketEconomy data. This header is then used
to perform trades in any PacketEconomy-enabled routers along the path to the
receiving endpoint. When pairing packets, trades are only performed if both
packets in a pair are PacketEconomy-enabled, otherwise the trade is directly
rejected. At the receiving point B, a PacketEconomy hook handles the packet,
removes the extension header and delivers the packet as normal to the receiving
flow endpoint. It also records relevant network and utility statistics. When the
receiving endpoint B has to send a packet to the original sending endpoint A, it
attaches a PacketEconomy extension header with feedback. This is eventually
received at the original sending endpoint A, where the feedback is stripped and
recorded. The next time a packet has to be sent the new feedback will be used
to select appropriate utility function parameters and budget values.

6.3.4.1 Adaptivity

Each endpoint needs to track both its own, as well as the other endpoint’s
budget and network performance. Specifically, each endpoint needs to track the
total packet benefit from received packets, which constitutes a form of return-
on-investment information, and attach this information when sending packets
to the other endpoint. The feedback from the opposite endpoint, along with
information regarding the available budget and the flow priorities, allows each
endpoint to adapt to changing network conditions. When network congestion
increases, depending on the number of flows and their priorities, an endpoint
may choose to spend its budget differently, taking into account both the priorities
of each flow and how well spent the budget is for each flow. The user may also
have a means of requesting additional budget from their provider in order to
support their QoS needs.

80

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

6.3.5 Technical Details
The core of PacketEconomy has been implemented as a C++ library, indepen-
dent of OMNET++, with a clean interface and implementation. We intended
for the library to be used in OMNET++ initially, but we envisioned the ability to
use the library with either other simulators, such as ns-2 or ns-3, or with real
networking stacks, such as that of the Linux OS, hooking into it via a user-space
networking hook. We also intend to provide on-line access to a more refined
version of it via an open source license. For this implementation, version 4.6 of
the OMNET++ simulator has been used in conjunction with version 3.2.0 of the
INET networking library. The part of the PacketEconomy model which is specific
to OMNET++ has been implemented in the form of two OMNET++ modules,
extending pre-existing INET modules. The first one extends the standard IPv6
stack module, in order to read, write and process the PacketEconomy IPv6 head-
ers on incoming and outgoing packets. This module is only used on endpoint
nodes. The second extended module is an alternative queue which is used in
Ethernet interfaces for outgoing packets. This module implements the Packet-
Economy trading on the queued packets and is used only in routers. The module
IPv6PE extends inet.networklayer.ipv6.IPv6 and is used within mod-
ule StandardHost6PE which extends inet.nodes.ipv6.StandardHost6.

6.3.5.1 Extension Header Description
The PacketEconomy extension header contains the fields which encode the 𝑑u�
packet utility function (the 𝑎, 𝑏 and 𝑐 parameters) as well as the available budget.
Each field is represented by a 32-bit IEEE 754 floating point number and as a
result the overhead involved is 128 bits. In addition, the IPv6 extension header
itself requires another 16 bits, thus a total of 144 bits or 18 bytes are required.
To decrease this overhead, a smaller floating point number representation may
be used with some numeric accuracy compromise. In this version of the experi-
ments no adaptivity is implemented and thus the feedback header is not used
on returning packets. If it were to be implemented, two 32-bit IEEE 754 floating
point number fields would be the maximum required, one for the accumulated
budget and one for the estimation of the average one-way delay.

6.3.5.2 The TCP/IP Stack at Endpoints
At the endpoints the TCP/IP stack has been modified mainly at the Network/In-
ternet layer. In particular, the Internet layer is used as the central point where
the appropriate per packet processing is performed. We only intervene at the
IPv6 layer where we attach / detach the IPv6 extension header containing the

81

6.3 Implementation

Figure 6.4: Graphical representation of OMNET++ module IPv6PE within
StandardHost6PE highlighted by a dashed frame.

PacketEconomy information. Additionally, the flow priority and packet utility
function parameters are defined within each application, although this does not
mean that these parameters are considered to be part of the application layer in
terms of the network stack; they are placed there for reasons of implementation
simplicity. These definitions are used as packets pass through the Internet layer.
Finally, the link layer is unmodified and unused.

6.3.5.3 The TCP/IP Stack at Routers
Within PacketEconomy-enabled routers we only modify the standard output
router queues, thus avoiding any interaction with the routing functionality itself.
In general, we manage the queue as normal, but allow PacketEconomy trading to
be performed between IPv6 packets with the PacketEconomy extension header
present. When trading is successful for a pair of packets, only their order and
their PacketEconomy extension header is modified. The link layer is unmodified
and unused. Also, depending on the queue admission policy used, when
packets are dropped they are done so before entering the queue and thus no

82

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

money is lost from the economy during PacketEconomy trading.
Specifically, when a new packet arrives it is added to the queue, as it would

normally be. Also, packets are dequeued and sent by the queue as they would
normally be. All PacketEconomy processing is performed on the queue during
the time-frame within which a packet is being sent. In the simulation, one trade
round is performed per packet sent by the queue, however this can be changed
if necessary.

The packets in the queue are defined as 𝑝u� where 𝑖 ∈ {0, 1, .., |𝑄| − 1} and |𝑄|
is the size of the queue each time a trade round is performed. The first packet
(𝑝0) is considered to be the one being sent and thus does not participate in the
trades. Thus, packets 𝑝u�u� = (𝑝1, 𝑝2, .., 𝑝|u�|−1) participate in trades. If a packet
arrives during the trade round, it will be held but will not participate in the
currently executing trade round. The sequence of the packets in the queue
is not used when pairing them; instead, the participating packet sequence is
permuted randomly yielding 𝑝′

u�u�. It should be noted that this permutation does
not affect the actual sequence of the packets in the queue, as it just a part of the
pairing scheme. Afterwards, the trading pairs are created by taking sequential
neighbouring and non-overlapping trading pairs: 𝑇u� = (𝑝′

2u�, 𝑝′
2u�+1) where 𝑖 ∈

{1, 2, .., ⌊(𝑄 − 1)/2⌋}. The trading negotiation and exchange is performed as
described in Chapter 5. However, in the course of taking PacketEconomy from
a theoretical model to a real network implementation some issues appeared
which had to be addressed. Firstly, the random nature of the packet pairings
will under normal conditions produce out-of-order packet sequences. This
negatively affects flows, especially window-based flows such as TCP, which will
reduce their throughput by assuming the reordering to be indicative of adverse
network conditions. Thus, reordering prevention has been implemented such
that trades do not result in packets of the same flow being serviced in a non-
FIFO manner. This is implemented efficiently using the HL-Hitters mechanism
described in Chapter 4. Secondly, in contrast to Chapter 5, trades are directly
rejected when the pair of packets belong to the same flow because allowing
them constitutes a waste of computational effort in the context where all the
packets of the same flow used the same utility function parameters. Finally, a
game-theoretic concern has been addressed by directly rejecting trades when the
buyer packet is larger than the seller packet (discussed further in Section 6.6.2).

It is also implied by the definition that if the number of participating packets
is odd, then one packet will not participate, chosen randomly. Afterwards, the
packet trades are attempted for each pair. In the simulation these are performed
sequentially, but a hardware implementation could easily implement them in
parallel since each packet pair is independent from the other pairs.

One issue which may be raised is the computational cost of inspecting IPv6
extension headers, required in this implementation. If this cost is prohibitive, it

83

6.4 Experimental Setup

would make sense to only execute PacketEconomy on routers which are closer
to the edges of the network, since the transmission speed is typically lower
there and thus the packet rate needed to be served is also lower and where
congestion is typically higher due to the network practices service providers
typically implement, such as high contention ratio.

6.3.5.4 Time Source Considerations
An accurate time source in both endpoints and intermediate routers aids in the
determination of the total delay of the packet since its original sending time.
Its availability allows for measuring the total time which has passed since the
packet was send from its sending endpoint. In the OMNET++ implementation,
we have used the global time source provided by the simulator.

If a global time source or sufficiently well synchronized local time sources
are not available, there is a fall-back option possible, which calculates the time
spent at each hop incrementally. At each hop, the time spent is the sum of the
processing delay, the queuing delay, the transmission delay, and the propagation
delay. The first two, i.e. the processing and queuing delay, can be calculated
accurately by the host or router internal clock, with no requirement of time
synchronization with other hops. The transmission time can be estimated very
accurately (especially for wired or optical links) by the transmitting interface
given the packet’s length and the interface’s bandwidth. Finally, the propagation
delay is not typically known a priori by interfaces, but it can be estimated when
it becomes significantly large (e.g by using an ICMP ping packet). The sum
of these delays can be added by each hop to the total time spent field in the
PacketEconomy packet extension header.

6.4 Experimental Setup
In this section the setup for the experiments is described including which pa-
rameters are used and how they are combined. An overview of all the evaluated
experimental cases is provided in Figures 6.6, 6.7, and 6.8. For the experiments
we have selected a representative set of queue admission policies (DropTail
and RED [31]), priority policies (PacketEconomy, Deficit Round Robin [94], and
Strict Priority), flow types (TCP and UDP) and other characteristics.

6.4.1 Non-QoS Configuration
We first describe the non-QoS-specific aspects of the experiments, leaving the
QoS-specific ones for the end of the section. In particular, in this first part we

84

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

Figure 6.5: Dumbbell network topology with 𝑁u�u�u� TCP flows (2 × 𝑁u�u�u� end-
points) and 𝑁u�u�u� UDP flows (2 × 𝑁u�u�u� endpoints) for a total of
𝑁 = 𝑁u�u�u� + 𝑁u�u�u� flows (2 × 𝑁 endpoints). All links are full duplex
10 Mbps with 50 ns propagation delay.

will not describe the PacketEconomy, the Deficit Round Robin (DRR) or the
Strict Priority (SP) configurations, which are the ones that implement QoS.

6.4.1.1 All Cases
The following aspects are taken into consideration in the experimental setup,
irrespective of the composition of flow types (e.g. TCP or UDP).

Layer 2 Setup
The network consists of a dumbbell topology, illustrated in Figure 6.5, with 𝑁
hosts on each side (2 ∗ 𝑁 total hosts) and 2 routers (𝑅1 and 𝑅2) between them.
The hosts on the left are the sending endpoints and the hosts on the right are the
receiving endpoints. Each host is connected via Ethernet with exactly one link
to either 𝑅1 or 𝑅2. The connections between endpoints and routers, as well as
the single connection between the two routers, are full duplex 10 Mbps with 50
ns propagation delay. Each host uses either a TCP- or a UDP-based application
through which it communicates with its peer.

Simulator Setup
The total simulation execution time is 160 simulated seconds with a warm-up of
110 sec (during which no statistics are recorded to allow flows to stabilize). Each
experiment is executed in 5 repetitions with different random number generator

85

6.4 Experimental Setup

seeds. The random number generator affects the first packet send time for
both UDP and TCP flows (a normal distribution 𝑁(10𝑠, 0.1𝑠)), the sending time
interval for the CBR UDP flows (a normal distribution 𝑁(30𝑚𝑠, 1𝑚𝑠)) and when
using RED on the queue 𝑄, the admittance of incoming packets (due to the
probabilistic nature of RED). This randomness is used to avoid synchronization
and bias problems as much as possible.

Queue Parameters
Each possible combination of the following parameters is examined, in 5 repeti-
tions as mentioned above.

• Router queue 𝑄 parameters:

– Maximum Size (|𝑄|): 100 packets
– Admission policy: DropTail, RED (𝑤u� = 0.002, 𝑚𝑖𝑛u�ℎ = 10, 𝑚𝑎𝑥u�ℎ =

100, 𝑚𝑎𝑥u� = 0.02)

6.4.1.2 Flow Composition Cases
Additionally, we examine three flow composition cases: one in which only TCP
flows are present, one in which only UDP flows are present and one in which
both TCP and UDP flows coexist.

The TCP-only Flows Case
In each experiment all the flows use the same TCP congestion avoidance algo-
rithm (Reno), with increased initial window support enabled, TCP window
scaling support enabled, TCP delayed ACKs support enabled, SACK support dis-
abled, the TCP Nagle algorithm disabled and an advertised window of 300000
bytes. In all cases the number of flows 𝑁u�u�u� = 𝑁 is 10 and the TCP Maximum
Segment Size (MSS) is 1400 bytes.

The UDP-only Flows Case
In each experiment all the flows are of Constant Bit Rate (CBR) type and use
the same send interval and payload size. The number of flows 𝑁u�u�u� = 𝑁 for
each unique send interval and payload size combination is calculated as the
number of flows required to achieve a given cumulative bandwidth requirement.
Two sub-cases are created: one where the cumulative bandwidth requirements
marginally pass the bottleneck router bandwidth, namely 10𝑀𝑏𝑝𝑠, and one
where the cumulative bandwidth requirements are 150% of the bottleneck router

86

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

bandwidth, i.e. 15𝑀𝑏𝑝𝑠. In both cases all protocol overheads are taken into
account when calculating the number of flows. The former is used to assess
performance at full queue capacity and the latter to assess performance under
overload.

The TCP and UDP Flows Case
This case combines the TCP-only and UDP-only cases. As in the TCP-only case,
the number of TCP flows 𝑁u�u�u� is constant, but half of what it was in the TCP-only
case (5 instead of 10), while the rest of the TCP-only case parameters are used
as before, including the two sub-cases for the MSS value. The combinations
for the UDP flows include all the send interval and payload size combinations
of the UDP-only case, but the two sub-cases for the cumulative bandwidth
requirements are reduced to one where the bandwidth requirements are 50%
of the bottleneck router bandwidth, i.e. 5𝑀𝑏𝑝𝑠.

6.4.2 QoS Configuration
In the following paragraphs the QoS-specific aspects of the experiments are
described.

6.4.2.1 Layer 2 Setup
When PacketEconomy is enabled and therefore trading between packets is per-
formed, it is only performed on the egress queue 𝑄 of the 𝑅1 → 𝑅2 connection.

6.4.2.2 Queue Parameters
In addition to the non-QoS queue parameters, an extra parameter, the priority
policy is examined as a part of the QoS configuration. The priority policy may be
either PacketEconomy (with 1 trading round per served packet), Deficit Round
Robin in the TCP-only cases (independent levels used = {𝑁, ⌈𝑁/2⌉, ⌈𝑁/4⌉}) or
Strict Priority in the UDP-only cases (independent levels used = {𝑁, ⌈𝑁/2⌉,
⌈𝑁/4⌉}). In the TCP and UDP flows case, a hierarchical structure is used where
QoS for TCP flows is performed via DRR and QoS for UDP flows via SP, and both
policies are then merged via a secondary SP policy which gives absolute priority
to UDP flows. A classifier is present before the DRR and SP queues which
classifies the incoming packets. The number of independent levels refers to the
number of classes used by the classifier, with a higher number meaning a finer-
grained differentiation between flows at a cost of higher memory requirements.

87

6.4 Experimental Setup

6.4.2.3 Flow Composition Cases
In all flow composition cases the priority of the TCP and UDP flows is inde-
pendent, i.e. the TCP and UDP flows have priorities that span the [0, 1] range
independently. This has been chosen so that the full range of priority values for
both TCP and UDP flows can be examined.

6.4.2.4 Flow Priority
When assessing performance with a priority policy (PacketEconomy, DRR, SP)
each flow is assigned a priority value 𝑝. In our experiments 𝑝 ∈ [0, 1], where
𝑝 = 0 corresponds to the lowest priority and 𝑝 = 1 to the highest priority.
This value is used directly in SP as the priority and in DRR as the weight, but
PacketEconomy needs the 𝑎, 𝑏, 𝑐 parameters of the utility function to be defined.
Thus, we have defined functions mapping the priority value 𝑝 to the 𝑎 (𝐶u�,
Equation 6.6), 𝑏 (𝐶u�, Equation 6.5) and 𝑐 (fixed) parameters for PacketEconomy
use.

This mapping function depends on an estimate of the baseline delay 𝑑u�u�,
which corresponds to the experienced delay of a packet without a priority
value, i.e. is not affected by a priority policy. This 𝑑u�u� value can be continuously
updated by the network stack of each endpoint as the flow transmits and receives
data, however in our experiments 𝑑u�u� has been precalculated for each case, by
executing a corresponding experiment for each case with the priority policy
disabled and measuring the median delay of all the flows.

Additionally, a spread parameter tuple (𝑠u�, 𝑠u�) is used to configure the inten-
sity of the difference between the highest and lowest priority flows. In essence,
it defines the range of values the 𝑡0 parameter of the utility function will receive.
Specifically, 𝑠u� and 𝑠u� are factors which define the highest priority flow’s maxi-
mum delay 𝑡0 and the lowest priority flow’s maximum delay 𝑡0 given a baseline
delay 𝑑u�u�. The intermediate flows’ maximum delays are linearly interpolated
between those two extremes.

Priorities for flows are meant to be more static, typically defined once and
infrequently changed, as an expression of relative importance and QoS require-
ments of each flow. They may also be predefined for select application types
based on common knowledge guidelines, for example, all VoIP flows should
get maximum priority. The main parameter a user needs to configure is the
(𝑠u�, 𝑠u�) spread parameter, which essentially controls the amount of degradation
lower priority flows will make in order to satisfy higher priority flows. Given
constraints on the acceptable delay for all flows, this parameter can also be auto-
matically controlled adaptively.

88

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

We use the 𝑌u�0
function (Equation 6.4)

𝑌u�0
(𝑝, 𝑑u�u�, 𝑠u�, 𝑠u�) = 𝑑u�u�𝑠u� + (1 − 𝑝)(𝑑u�u�𝑠u� − 𝑑u�u�𝑠u�), with 𝑝 ∈ [0, 1], 𝑠u�, 𝑠u� ≥ 0, 𝑑u�u� > 0

(6.4)
to perform a linear interpolation between the maximum delay 𝑑u�u�𝑠u� correspond-
ing to 𝑝 = 0 and the minimum delay 𝑑u�u�𝑠u� corresponding to 𝑝 = 1.

We then use the 𝐶u� function (Equation 6.5)

𝐶u�(𝑝) = 1 + (10𝑝)2, with 𝑝 ∈ [0, 1] (6.5)

to calculate a flow’s utility function 𝑏 parameter value. Other forms of 𝐶u� have
also been found to work well, but this one performed consistently well in all the
experimental cases.

Finally, we use the 𝐶u� function (Equation 6.6)

𝐶u�(𝑝, 𝑑u�u�, 𝑠u�, 𝑠u�, 𝑐) = 𝐶u�(𝑝)/(𝑌u�0
(𝑝, 𝑑u�u�, 𝑠u�, 𝑠u�)u�), with 𝑝 ≥ 0 (6.6)

to calculate a flow’s utility function 𝑎 parameter value.
In our experiments we examine the performance for two spread parame-

ter tuple cases (𝑠u�, 𝑠u�) ∈ {(1, 2), (1, 4)} in combination with all the previously
described parameters and cases.

6.4.3 Collected Measurements
For each combination we measure the following statistics:

• Throughput per priority level.

• End-to-end delay per priority level.

• Packet drop per priority level.

• Utility (packet value 𝑑u�, balance 𝑚u�, total 𝑑u� + 𝑚u�).

A total of 2150 experiments have been executed, as 430 parameter combina-
tions in 5 repetitions to assess performance. Additional experiments have been
executed to determine the baseline delay for each experimental case as well as
a much larger number of experiments during the development of the system.
Due to space considerations, we have selected to present the above described
representative subset of cases.

89

6.4 Experimental Setup

Figure 6.6: Overview of the experimental parameter combinations, producing
the total number of experiments carried out. A total of 2150 combi-
nations are examined.

6.4.4 Evaluation

We measure the performance of the PacketEconomy by comparing it to the
performance of DRR and SP. The defining characteristics of the DRR policy
are the number of classes and the weight of each class, while in SP the priority
of each flow is the only parameter. Regarding the number of classes, we have
considered cases where the number of DRR classes is identical to the number
of flows, half of the number of flows and a quarter of the number of flows
(rounding up when the fraction is non-integral), as described in section 6.4.2.2.
For example, in a case where we have 68 UDP flows, the DRR cases evaluated
are ones with 68, 34 and 17 classes.

The ideal case is considered to be the one where a DRR queue policy is used,
which has one independent queue for each flow (i.e., each flow belongs to a
separate class). The class of each flow coincides with the priority of the flow
(linearly scaled).

Figure 6.7: Flow composition case combinations. Three flow type cases are
examined: TCP-only, UDP-only, and TCP & UDP flows. A total of 10
combinations are examined.

90

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

Figure 6.8: Queue priority policy combinations. PacketEconomy is investigated
with different values for admission policy, spread, and 𝑐. Also, five
priority levels are examined to check whether the flows have an
incentive to participate in PacketEconomy. For DRR and SP, the
number of levels used is examined. A total of 43 combinations are
examined.

6.5 Experimental Results
In this section the results of the experiments are presented, organised on a flow
composition case basis. For each flow composition case (TCP-only, UDP-only,
TCP & UDP), the relevant metrics are presented. In particular, for TCP flows
throughput and packet drop percentage are presented, while for UDP flows
end-to-end delay and packet drop percentage are presented. Each diagram
contains both the PacketEconomy results as well as the corresponding DRR (for
TCP flows) or SP (for UDP flows) results, to allow for comparison between them.

Overall, the results confirm that it is possible, using appropriate utility
function parameters, to control the distribution of throughput for TCP flows
and delay for UDP flows meaning that PacketEconomy is effective as a QoS
mechanism. The distribution of throughput and delay, is not a linear function
of priority, however it is consistent in the sense that an increase (or decrease) in
priority leads to an increase (or decrease) of throughput and to a decrease (or
increase) in end-to-end delay.

91

6.5 Experimental Results

(a) Median throughput of flows in kbps. (b) Median percentage of dropped packets.

Figure 6.9: TCP-only flows case results per priority level with a DropTail bottle-
neck router queue. Throughput increases with priority, as expected,
and two spread-𝑐 combinations distribute throughput more aggres-
sively than the other two. Packet drop is low (< 1%) and approxi-
mately the same for all priority levels.

In these experiments only one trading round was used per packet served,
however multiple such rounds can be executed. The result would be a more
aggressive distribution of throughput and delay (everything else being equal)
and thus if a lower minimum delay or a higher maximum throughput is required
without changing the utility function parameters, the trading rounds can be
increased.

6.5.1 The TCP-only Flows Case
In this case we are concerned with flow throughput and packet drops. For the
case where a DropTail bottleneck router queue is used, the results for through-
put are presented in Figure 6.9a and for packet drop percentage in Figure 6.9b.
PacketEconomy has similar performance to DRR as far as packet drop is con-
cerned. In the case of throughput, PacketEconomy displays a non-linear, but
smooth distribution, while DRR with 𝑁 and ⌈𝑁/2⌉ levels is largely linear, how-

92

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

(a) Median throughput of flows in kbps. (b) Median percentage of dropped packets.

Figure 6.10: TCP-only flows case results per priority level with a RED bottleneck
router queue. Throughput increases with priority, as with DropTail,
but it is distributed less aggressively. Packet drop is low (< 2%) but
slightly higher than with DropTail and approximately the same for
all priority levels.

ever DRR with ⌈𝑁/4⌉ loses this property. We have seen from other experiments
(outside the presented subset) that it is possible to select utility functions in
such a way that the distribution is linear, however, this impacts the distribu-
tion of throughput and end-to-end delay in the TCP & UDP flows case. Also,
we considered it useful to use the same utility function creation scheme for all
flow composition cases to allow for easier and more objective comparison of
performance.

Correspondingly, for the case where a RED bottleneck router queue is used,
the results for throughput are presented in Figure 6.10a and for packet drop
percentage in Figure 6.10b. The use of the RED admission policy makes the
distribution of throughput with PacketEconomy more linear, due to limiting
higher priority flows from getting a higher proportion of throughput. DRR is
not affected significantly by RED and the comments on DRR’s behaviour under
DropTail hold for RED as well. Packet drop percentage with RED is, as expected,
higher for both PacketEconomy and DRR, which perform almost identically in

93

6.5 Experimental Results

(a) 120 bytes UDP pay-
load size, 194 UDP
flows.

(b) 240 bytes UDP pay-
load size, 120 UDP
flows.

(c) 480 bytes UDP payload size, 68
UDP flows.

Figure 6.11: UDP-only flows case results for median end-to-end delay per prior-
ity level with a DropTail bottleneck router queue with 100% band-
width requirements. End-to-end delay decreases with priority, as
expected, and two spread-𝑐 combinations distribute delay more
aggressively than the other two. Note: the 𝑦 axis is logarithmic.

this respect.

6.5.2 The UDP-only Flows Case
In this case we are concerned with flow end-to-end delay and packet drops.
Due to the large number of UDP flows used (68 - 194 with 100% bandwidth
requirements, 102 - 290 with 150% bandwidth requirements) we only present 10
representative priority levels in the figures of this section, to preserve legibility.
Both PacketEconomy and SP behave relatively smoothly with respect to priority
levels and as a result, omitting some intermediate flow priority levels does not
significantly impact the overall results.

For the case where a DropTail bottleneck router queue is used, the results for
end-to-end delay are presented in Figure 6.11 and for packet drop percentage
in Figure 6.12. PacketEconomy has similar performance to SP as far as packet
drop is concerned. In the case of end-to-end delay, both PacketEconomy and

94

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

(a) 120 bytes UDP pay-
load size, 194 UDP
flows.

(b) 240 bytes UDP pay-
load size, 120 UDP
flows.

(c) 480 bytes UDP payload size, 68
UDP flows.

Figure 6.12: UDP-only flows case results for median packet drop percentage
per priority level with a DropTail bottleneck router queue with
100% bandwidth requirements. Packet drop is between 7.5% and
2.5% decreasing as the number of flows decreases and as the size of
the payload increases. It is approximately the same for all priority
levels.

SP display a non-linear but smooth distribution. The number of SP levels does
not affect performance measurably here. It can be seen that PacketEconomy
distributes delay in a more equitable manner than SP, which penalizes the
low priority flows disproportionately. Our solution prevents this problem by
disallowing starvation of the low-priority flows through the application of the
packet utility function deadline (𝑡0). In both cases, the number of flows and the
size of the payload does not affect the basic delay distribution, although it is
obvious that smaller payloads allow for a lower minimum delay.

End-to-end delay for the RED bottleneck router queue with 100% bandwidth
requirements is shown in Figure 6.13 and is almost identical to the DropTail
queue case shown in Figure 6.11. Packet drop percentage accordingly shown in
Figure 6.14 mirrors the DropTail case shown in Figure 6.12.

End-to-end delay for both DropTail and RED bottleneck router queues with
150% bandwidth requirements is the same as in the respective cases with 100%

95

6.5 Experimental Results

(a) 120 bytes UDP pay-
load size, 194 UDP
flows.

(b) 240 bytes UDP pay-
load size, 120 UDP
flows.

(c) 480 bytes UDP payload size, 68
UDP flows.

Figure 6.13: UDP-only flows case results for median end-to-end delay per pri-
ority level with a RED bottleneck router queue with 100% band-
width requirements. End-to-end delay decreases with priority, as
expected, and two spread-𝑐 combinations distribute delay more
aggressively than the other two. Note: the 𝑦 axis is logarithmic.

bandwidth requirements.
On the other hand, it can be seen that, as expected, when the throughput

requirements of the flows are higher than the available bandwidth of the bot-
tleneck router, packet drops increase, as shown in Figure 6.15 for a DropTail
bottleneck router queue.

Packet drop percentage for the RED bottleneck router queue with 150%
bandwidth requirements is almost identical to the DropTail queue case shown
in Figure 6.15, albeit with slightly higher variation in packet drop due to the
RED queue.

6.5.3 The TCP & UDP Flows Case
In this case we are concerned with throughput for the TCP flows, end-to-end
delay for the UDP flows and packet drop percentage for both. As in the previous
section, due to the large number of UDP flows used (34 - 77 with 50% bandwidth

96

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

(a) 120 bytes UDP pay-
load size, 194 UDP
flows.

(b) 240 bytes UDP pay-
load size, 120 UDP
flows.

(c) 480 bytes UDP payload size, 68
UDP flows.

Figure 6.14: UDP-only flows case results for median packet drop percentage
per priority level with a RED bottleneck router queue with 100%
bandwidth requirements. Packet drop is between 7.5% and 2.5%
decreasing as the number of flows decreases and as the size of
the payload increases. It is approximately the same for all priority
levels.

requirements) we only present 10 representative priority levels in the figures
of this section to preserve legibility. For the case where a DropTail bottleneck
router queue is used, the results for TCP throughput are presented in Figure 6.16
and for packet drop percentage in Figure 6.17. PacketEconomy has similar
performance to DRR/SP as far as packet drop is concerned. In the case of
throughput, PacketEconomy displays a non-linear but smooth distribution
while DRR with 𝑁 levels is largely linear, however DRR with ⌈𝑁/2⌉ or ⌈𝑁/4⌉
levels loses this property. We have seen from other experiments (outside the
presented subset) that it is possible to select utility functions in such a way that
the distribution is linear, however, this impacts the distribution of throughput
and end-to-end delay in the TCP & UDP flows case. Also, we considered it
useful to use the same utility function creation scheme for all flow composition
cases to allow for easier and more objective comparison of performance.

The results for TCP throughput for the RED bottleneck router queue pre-

97

6.5 Experimental Results

(a) 120 bytes UDP pay-
load size, 290 UDP
flows.

(b) 240 bytes UDP pay-
load size, 180 UDP
flows.

(c) 480 bytes UDP payload size, 102
UDP flows.

Figure 6.15: UDP-only flows case results for median packet drop percentage per
priority level with a DropTail bottleneck router queue with 150%
bandwidth requirements. Packet drop is approximately 38% for
all payload sizes. It is also approximately the same for all priority
levels.

sented in Figure 6.18 are more linear than the DropTail queue case shown in
Figure 6.16, most probably since TCP flows keep their congestion windows
smaller due to packet drops.

The packet drop percentage for the RED bottleneck router queue is similar
to the DropTail queue case shown in Figure 6.17, albeit with higher variation in
packet drop due to the RED queue. The DRR/SP queue also displays higher
packet drop percentage, approximately the same as PacketEconomy.

Both the UDP end-to-end delay and the packet drop percentage for the
RED bottleneck router queue are similar to their DropTail counterparts shown
in Figures 6.19 and 6.20. However, the packet drop percentage for the RED
bottleneck router queue is approximately 2.5% and does not significantly change
with UDP payload sizes.

98

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

(a) 120 bytes UDP pay-
load size, 97 UDP
flows.

(b) 240 bytes UDP pay-
load size, 60 UDP
flows.

(c) 480 bytes UDP payload size, 34
UDP flows.

Figure 6.16: TCP & UDP flows case results for median TCP throughput per
priority level with a DropTail bottleneck router queue. Throughput
increases with priority, as expected, but two spread-𝑐 combinations
distribute throughput less aggressively at high priority values than
the other two.

6.6 Game-theoretic Aspects
In this section the game-theoretic aspects of PacketEconomy are discussed.

6.6.1 Incentive to Participate
The first issue is whether flows have an incentive to participate in PacketEcono-
my, i.e. the property of individual rationality, something which has been also
investigated in Chapter 5. According to that previous work, due to trades being
Pareto improvements on each trading packet’s benefit, we concluded that there
is a NE in which all flows participate in the scheme.

The following results illustrate that individual rationality is present in the
real network implementation of PacketEconomy as well, with the caveat that in
practice only a subset of flows have been tested for this property.

99

6.6 Game-theoretic Aspects

(a) 120 bytes UDP pay-
load size, 97 UDP
flows.

(b) 240 bytes UDP pay-
load size, 60 UDP
flows.

(c) 480 bytes UDP payload size, 34
UDP flows.

Figure 6.17: TCP & UDP flows case results for median TCP packet drop per-
centage per priority level with a DropTail bottleneck router queue.
Packet drop is between 0.5% and 2%, decreasing as the number of
UDP flows decreases and as the size of the UDP payload increases.
It is approximately the same for all priority levels. DRR/SP packet
drop percentage is very low, approximately 0.07%.

Specifically, this property requires that an individual, multiply-replicated
experiment needs to be performed for each flow for which its incentive to
participate needs to be established. Due to the large number of flows used,
and due to the fact that utility functions are not arbitrary but vary smoothly
from priority level to priority level, we have performed and we only present 5
representative priority levels in the figures of this section. Therefore, we expect
that omitting some intermediate flow priority levels does not significantly impact
the overall results.

6.6.1.1 The TCP-only Flows Case
The incentive to participate in the TCP-only flows case is presented in Figure 6.21
and as it can be seen, all examined flows have a strong incentive to participate
in both DropTail and RED bottleneck router queue cases.

100

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

(a) 120 bytes UDP pay-
load size, 97 UDP
flows.

(b) 240 bytes UDP pay-
load size, 60 UDP
flows.

(c) 480 bytes UDP payload size, 34
UDP flows.

Figure 6.18: TCP & UDP flows case results for median TCP throughput per
priority level with a RED bottleneck router queue. Throughput in-
creases with priority, as with DropTail and the differences between
spread-𝑐 combinations are diminished.

6.6.1.2 The UDP-only Flows Case
The incentive to participate in the UDP-only flows case is presented in Figure 6.22
and as with the TCP-only flows case it can be seen all examined flows have a
strong incentive to participate in the DropTail bottleneck router queue case for
all the different UDP payload sizes examined. The incentive to participate for
the RED bottleneck router queue with 100% bandwidth requirements shown in
Figure 6.23 is almost identical to the DropTail queue case shown in Figure 6.22.

The incentive to participate for both DropTail and RED bottleneck router
queues with 150% bandwidth requirements is similar to the DropTail queue
with 100% bandwidth requirements case shown in Figure 6.22 and is also always
over 100%.

6.6.1.3 The TCP & UDP Flows Case
The incentive to participate for TCP and UDP flows in the mixed flow types
case is similar to the incentive the flows have in the TCP-only and the UDP-only

101

6.6 Game-theoretic Aspects

(a) 120 bytes UDP pay-
load size, 97 UDP
flows.

(b) 240 bytes UDP pay-
load size, 60 UDP
flows.

(c) 480 bytes UDP payload size, 34
UDP flows.

Figure 6.19: TCP & UDP flows case results for median UDP end-to-end delay
per priority level with a DropTail bottleneck router queue. Delay
decreases with priority, as expected, but two spread-𝑐 combinations
distribute delay more aggressively than the other two. Note: the 𝑦
axis is logarithmic.

case and is almost always over 100% providing an incentive to participate in
PacketEconomy. In some rare cases, such as the one shown in Figure 6.24, the
incentive is slightly lost. We have found this to happen occasionally with RED
queues and higher priority TCP flows. We have concluded that this happens due
to the larger error in estimation of delivery time with larger size high priority
packets. We expect that due to the dynamic nature of the network, flows will
sometime misestimate their delivery times and as a result affect their ask or bid
prices. However, we expect these fluctuations to cancel out on average.

6.6.2 Packet Size Variability
In the previous Chapter 5, all packets were assumed to be of identical size.
In this more realistic implementation, packets have different sizes in some
cases and this means that a trade may affect in-between packets’ queuing time.
Initially, in our experiments we performed trades irrespective of the packet size

102

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

(a) 120 bytes UDP pay-
load size, 97 UDP
flows.

(b) 240 bytes UDP pay-
load size, 60 UDP
flows.

(c) 480 bytes UDP payload size, 34
UDP flows.

Figure 6.20: TCP & UDP flows case results for median UDP packet drop per-
centage per priority level with a DropTail bottleneck router queue.
Packet drop is between 0.8% and 2.5%, decreasing as the number of
UDP flows decreases and as the size of the UDP payload increases.
It is approximately the same for all priority levels. DRR/SP packet
drop percentage is very low, approximately 0.03%.

of the two trading packets. This meant that when a larger buyer packet traded
positions with a smaller seller one, in-between packets were also affected, since
their queuing time would increase. Conversely, with a smaller buyer packet
and a larger seller one, the in-between packets would see a decrease in queuing
time. The only exception was when the trading packets are adjacent. We were
mainly concerned by the problem the first case introduces since in the second
case the in-between packets are favoured.

There were a number of alternative approaches to this issue. The ideal one
would be to incorporate the price of extra delay of each in-between packet into
the ask price and then distribute the funds accordingly to all the in-between
packets. However, this would significantly increase computational complexity,
completely remove locality of trades and preclude easy parallelisation. There-
fore, a compromise was sought in which we disallowed any trades between
larger buyers and smaller sellers. Although this approach somewhat decreased

103

6.6 Game-theoretic Aspects

(a) DropTail bottleneck router queue. (b) RED bottleneck router queue.

Figure 6.21: TCP-only flows case results per priority level for incentive to par-
ticipate as a percentage of total benefit gained when participating
versus not participating. In all cases it is over 100% and as a result
there is always an incentive to participate in PacketEconomy. Note:
the 𝑦 axis is logarithmic.

the number of trades performed and as a result diminished the QoS effects,
the results were nevertheless acceptable in both network and game-theoretic
terms. Additionally, the QoS effects can be recovered by increasing the number
of trading rounds, with the corresponding impact on computational complexity
(a constant factor equal to the number of trading periods).

Another approach would be to create (a small number of) separate queues
for different packet size ranges. This would moderate the effects of trades on in-
between packets by putting an upper bound on the extra delay incurred when
different size packets trade, although it would still prevent trades from always
being Pareto improvements. However, we estimate that this approach would also
decrease trades performed by creating more but smaller-sized packet queues,
which as before, can be mitigated by increasing the number of trading rounds,
with the corresponding impact on computational complexity. Additionally,
it would create the problem of deciding in which manner packets from the
different queues will be serviced, effectively wrapping PacketEconomy in a

104

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

(a) 120 bytes UDP pay-
load size, 194 UDP
flows.

(b) 240 bytes UDP pay-
load size, 120 UDP
flows.

(c) 480 bytes UDP payload size, 68
UDP flows.

Figure 6.22: UDP-only flows case results per priority level with a DropTail bottle-
neck router queue with 100% bandwidth requirements. Displayed
is the incentive to participate as a percentage of total benefit gained
when participating versus not participating. In all cases it is over
100% and as a result there is always an incentive to participate in
PacketEconomy. Note: the 𝑦 axis is logarithmic.

higher-level multi-queue scheduler.

6.6.3 Truthfulness of Packet Utility Function
Another useful property of game-theoretic models is for them to provide in-
centive for players to report their utility function truthfully, since this defines
the ask and bid prices. In mechanism design, a process is incentive-compatible
if all of the participants fare best when they truthfully reveal any private in-
formation asked for by the mechanism, however there are different degrees of
incentive-compatibility:

• Dominant Strategy Incentive Compatibility: truth-telling is a dominant
strategy, also known as Strategyproofness.

• Incentive Compatibility (a weaker notion): truth-telling is a Bayes-Nash

105

6.6 Game-theoretic Aspects

(a) 120 bytes UDP pay-
load size, 194 UDP
flows.

(b) 240 bytes UDP pay-
load size, 120 UDP
flows.

(c) 480 bytes UDP payload size, 68
UDP flows.

Figure 6.23: UDP-only flows case results per priority level with a RED bottleneck
router queue with 100% bandwidth requirements. Displayed is
the incentive to participate as a percentage of total benefit gained
when participating versus not participating. In all cases it is over
100% and as a result there is always an incentive to participate in
PacketEconomy. Note: the 𝑦 axis is logarithmic.

equilibrium, i.e. it is best for each participant to tell the truth, provided
that others are also doing so.

In PacketEconomy the players are the flows which define the packet utility
functions and the private information aimed to be truthfully revealed is the
set of utility function parameters. Preliminary experiments indicate that the
flows do not gain by reporting false utility functions, because changing the
total utility a packet receives (the benefit) is the sum of two quantities with
an inverse relation: increasing the packet value incurs higher budgetary costs
and increasing the accumulated budget negatively impact packet value. In
other words, the mechanism may be incentive-compatible. However, since
there is a spread between ask and bid prices but no agent to minimize this
spread as in stock exchanges, it is conceivable that to some limited extent flows
can manipulate their utility function parameters in order to gain added benefit.

106

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

Figure 6.24: TCP and UDP flows case results for TCP flows per priority level
with a RED bottleneck router queue with 240 bytes UDP payload
size and 60 UDP flows. Displayed is the incentive to participate
as a percentage of total benefit gained when participating versus
not participating. In most cases it is over 100%, but for some high
priority flows it falls below 100%. Note: the 𝑦 axis is logarithmic.

Moreover, this manipulation is harder to perform for intermediate priority flows
and easier for higher and lower priority ones since the ask and bid prices are
determined identically. Thus intermediate flows will tend to cancel out gains
from sells (or buys) with losses from buys (or sells). In any respect, further
investigation is required for this issue to be fully resolved.

6.6.4 Price of Anarchy / Stability
A notion which is also interesting to investigate in this context is the Price of
Anarchy (PoA) [57, 85] and its related Price of Stability (PoS) [91, 6]. These values
quantify the relation between the efficiency of the outcome produced by a
system in which the players behave individually, selfishly and in a decentralized
manner, such as in the case of PacketEconomy, and the efficiency of the outcome
produced by a centralized decision maker. Both require a means of quantifying
the measure of efficiency an outcome, called a welfare function. In our case,

107

6.6 Game-theoretic Aspects

a natural candidate would be the sum of the benefits of the flows, called the
utilitarian function. Using the welfare function, the Price of Anarchy is the
ratio of the value of the welfare function for the optimization problem solution
(centralized decision maker) over the worst value of the welfare function for
the selfish and decentralized solutions. Correspondingly, the Price of Stability
is the ratio of the value of the welfare function for the optimization problem
solution (centralized decision maker) over the best value of the welfare function
for the selfish and decentralized Nash Equilibrium solution.

The PoA and PoS have been investigated extensively in theoretical models,
but a real network presents significant problems to overcome in calculating exact
values. More specifically, although calculating the welfare function for any of
the experimental case results is easily done, comparing this value to an optimal
solution is harder, since deciding what this optimal solution would be is non-
trivial. For example, fixed size router queues, probabilistic admission policies
(e.g. RED), adaptive flows which are affected by feedback (e.g. TCP) as well as
the interaction between flow types and packet sizes (e.g. UDP packets tend to
interfere with TCP flow control) all make a theoretical analysis much harder.
Judging from the network-centric results, we can see that both throughput and
delay are being distributed in accordance to priority and there does not seem to
be any significant loss of overall efficiency (e.g. the sum of flow throughputs
with PacketEconomy is equal to the sum of flow throughputs using DRR, just
differently distributed). We expect that it would be possible in a future work to
examine a case with a centralized scheduler which, taking into account each
flow’s utility functions, decides which packets to deliver and in what manner.
However, this would just produce an upper bound on the welfare value, since is
not necessary that the solution provided is implementable in networking terms
or that it produces the calculated welfare, since the above mentioned networking
concerns are not taken into account.

6.6.5 Relation to Smart Market

In the seminal work of MacKie-Mason and Jeffrey [64], they propose a general-
ized Vickrey auction (GVA) in order to provide QoS for packets in queues. The
main disadvantage of that approach is the computational complexity it induces,
since a full auction needs to be performed for each packet served. While not
equivalent, our approach can be seen as an approximation of the smart mar-
ket mechanism, where increasing the number of trading periods improves the
approximation.

108

Chapter 6: Implementing PacketEconomy: Distributed Money-based QoS
in OMNET++

6.7 Conclusions and Future Work
In this work we presented a realistic implementation of PacketEconomy, a dis-
tributed quality of service (QoS) mechanism for network packets, within the
OMNET++ discrete event simulator and using the INET network simulation
library. With this work we aim to provide high performance, network-wide, fine-
grained, user-controlled QoS. We have presented the complexities that needed
to be overcome and the required adaptations made to the theoretical Pack-
etEconomy model for a realistic environment. We then performed extensive
experimental evaluation of the implementation and presented characteristic
results in comparison to the deficit round robin and strict priority QoS policies.

Possible extensions of this work comprise a larger number of scenarios to
be examined, with more complex network topologies and flow compositions,
as well as adaptivity being used in endpoints to auto-configure utility function
parameters. We also envision PacketEconomy’s applicability in alternate con-
texts, such as being used in DTNs (Delay-Tolerant Networks) as a QoS policy.
In particular, when fast transmission is possible, the faster and more efficient
PacketEconomy can be used, while when computational complexity is not at a
significant premium and slower transmission is only possible, an auction-based
QoS policy (such as [64]) can be used instead. An additional alternate context
concerns IoT (Internet of Things) networks. Since PacketEconomy uses a notion
of utility, which encodes a time-varying quantity, it may be useful for IoT net-
works wherein communication comes at a premium in both terms of energy
and computational complexity. Being able to more accurately express the value
of a packet as a function of time may allow the network to make better service
decisions.

Overall, we consider our approach to be both theoretically well-founded, as
well as practically applicable, a claim which is also supported by the experimen-
tal results.

109

CHAPTER 7

A Game-theoretic Analysis of
Preventing Spam over Internet

Telephony via Audio
CAPTCHA-based Authentication

7.1 Introduction
The explosive growth of the Internet has introduced a wide array of new tech-
nological advances and more sophisticated end-user services. One of them is
VoIP, which is a developing technology that promises a low-cost, high-quality
and availability service of multimedia data transmission. Inevitably though,
VoIP “inherited” not only these positive features of Internet services, but also
some of their problems [22][52][53][110]. One of them is Spam over Internet
Telephony (SPIT) [90][26], which is the expression of Spam in VoIP network
environments. SPIT is a challenging issue that IP telephony is expected to be
facing in the near future. This is the reason why a) major organizations have
already started developing mechanisms to tackle SPIT [37][89], and b) the U.S.
Federal Communications Commission has extended the Telephone Consumer
Protection Act of 1991 to include automated calls, called robocalls [27]. More-
over, it should be stated that the U.S. Federal Trade Commission has created the
“Do Not Call Registry” in order to allow users to reduce the number of telemar-
keting sales calls received (automated or not) [105]. The active registrations in
the “Do Not Call Registry” were over 217 million on October 30th, 2012 [28].

The SPIT threat for VoIP is the analogue of spam for e-mail. However, due

111

7.1 Introduction

to its characteristics, it may also give the opportunity to malicious users to not
only send low- or zero-cost unsolicited instant messages but also to make low-
or zero-cost unsolicited calls by using automated software (bots). The malicious
user’s main purpose could be financial, like presenting advertisements, or to
extract/steal a legitimate user’s personal information (phishing). A real-life
example is the “Rachel” robocall enforcement case, where five companies were
shut down, because they made millions of illegal pre-recorded robocalls claim-
ing to be from “Rachel” and “Cardholder Services” while pitching credit card
interest rate reduction services [29]. Although the similarity of the SPIT phe-
nomenon to the well-established spam threat is easy to identify, this does not
lead to the conclusion that the techniques handling spam are appropriate for
handling SPIT as well. While applying the anti-spam techniques can be done
quite easily in terms of service configuration, some characteristics of SPIT make
the direct application of anti-spam techniques inefficient and ineffective. In
particular, telephony and instant messaging services operate in real time while
email services are based on a “store and forward” model [46][96]. Therefore,
the anti-spam techniques can examine the content/body of the email in order
to classify it as spam or not, but this is not possible for VoIP real-time communi-
cation services [76].

A serious obstacle when trying to prevent SPIT is identifying VoIP communi-
cations which originate from software robots (“bots”) in real-time. A typical way
to tackle these attacks is the use of a Reverse Turing Test, called CAPTCHA (Com-
pletely Automated Public Turing Test to Tell Computer and Humans Apart).
Since visual CAPTCHA are hard to apply in VoIP systems, audio CAPTCHA ap-
pear to be appropriate for defending against SPIT calls/messages [39][100][99].

VoIP is a useful technology with significant value for legitimate users, as it
enables communication and decreases costs. On the other hand, VoIP spammers
can obtain significant financial revenues as the email spam paradigm has shown.
Therefore, we have a situation where independent decision makers are engaged
in a strategic interaction; the actions taken by SPIT senders may influence the
defensive actions taken by the VoIP users and the opposite. The outcome of such
scenarios is not only a matter of effective tools like audio CAPTCHA challenges,
but also of how independent selfish decision makers will act and react in the
presence of such tools. Such settings, where two or more independent decision
makers interact, can be studied with concepts and tools from Game Theory. The
equilibrium points of the respective game-theoretic model can reveal important
attributes of the state(s), in which the system is expected to operate. For example,
it will reveal how often the audio CAPTCHA will be used or whether the
overall rate of SPIT calls decreases in the presence of audio CAPTCHA. In the
presence of selfish users, there are examples where the introduction - always
with good intentions - of a tool or an extra option for the users may lead to worse

112

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

overall system performance. This can happen even with the simple addition of
a new tool to an existing system. For example, in [45] scenarios are identified
where increasing the number of (selfish) security experts of an information
network may lead to reduced overall security of the network; the Braess paradox
[11] shows how adding an extra route to a traffic network may lead to worse
conditions for selfish drivers.

In this work, we assume the existence of effective audio CAPTCHA chal-
lenges and discuss how the strategic interaction between SPIT senders and VoIP
users can be modelled as a two-player game in the presence of such CAPTCHAs.
In particular, we propose a game-theoretic model and show how the resulting
model can be used to predict the behaviour that the two opponent communities
will eventually adopt, how it can guide to fewer SPIT messages and how the
use of CAPTCHA assists VoIP users against SPIT. As part of the legitimate user
defences against SPIT we also integrated an anti-SPIT filter, which classifies each
incoming call/message as legitimate, malicious or “unknown” (when it is not
possible to have a confirmed answer). After the filter’s incoming call classifi-
cation, the user may directly accept or reject the call or request a CAPTCHA,
depending on the precision and the verdict of the filter.

7.2 Related Work
As the SPIT phenomenon is practically still in its infancy, we were not able to find
relevant research work focusing on the cost of spam for both the SPIT sender
and the user, or on relevant game-theoretical models. Therefore, we present
research work based on a close relative of SPIT, i.e., e-mail spam.

7.2.1 Cost of Unsolicited Communication
Kim Y., et al. [54] propose a method to measure the disutility experienced by
e-mail users who receive spam. Their study employs conjoint analysis of stated
preference data to estimate e-mail users’ overall inconvenience cost attributable
to spam. The results show the inconvenience-originating cost of spam to be
about $0.0026 per spam message.

Kanich C., et al. [47] present a methodology for measuring the conversion
rate of spam. They produced nearly half a billion spam e-mails and they iden-
tified the number that were successfully delivered, the number that passed
through popular anti-spam filters, the number that elicited user visits to the
advertised sites, and the number of “sales” and “infections” produced. They
managed to calculate that the total revenue of a spam campaign is about $7000
and the cost to produce it is the pay-check of three “good” programmers. There-

113

7.2 Related Work

fore the cost per message is about $0.001. Finally, a report placed the retail price
of spam delivery at slightly under $80 per million [113]. This price means that
each spam email costs $0.00008, but we stick to the previous paper’s cost esti-
mates, as this kind of price is an order of magnitude less than what legitimate
commercial mailers charge.

7.2.2 Game-theoretic Models
Androutsopoulos I., et al. [5] present an interesting game-theoretic model for
the interaction of spam and ordinary e-mail users and later extend their model
in [109] to the case where the users are able to use Human Interaction Proofs
(HIP). In the latter work, they focused on the scenario where the users can read
messages, delete them without reading them or send HIP. They have provided an
extensive theoretical analysis of a game-theoretic model for the problem of spam.
As discussed earlier, there are important qualitative differences between SPIT
and spam. We generalize the model proposed in [109] to a more complicated
problem with more actions to account for additional situations that arise in VoIP,
and apply it within a related, but substantially different, application context,
namely VoIP. We also experimentally confirm the predictions of the model.

Parameswaran M. [86] suggests that the spammer can strategise to maximize
the amount of spam sent by making inferences from the block-list rules. They
introduce a theoretical modelling approach for the spammer’s behaviour and
present a comparison of this behaviour with the data that has been collected
from block-list organizations. The main issue with this work is that is based
on collected data, therefore its outcomes cannot be generalized. Shahroudi
A.B. et al. [92] examine how VoIP service providers attempt to control the
growing phenomenon of SPIT by creating a game-theoretic model of competition
between providers. The model is based on the notion that two different service
providers, which try to maximize their profit with different business strategies,
are competing on shared resources. Each service provider can select to either
detect or prevent SPIT in order to address attacks, with consequences to the
overall profit of both providers. The research outcome is that the providers
are going to focus on mechanisms which detect SPIT attacks, because even
though they are more expensive than preventative mechanisms, it maximizes
their profit.

Moreover, a discussion of game theory approaches for detection software can
be found in [13]. The proposed model is able to assist firms in the configuration
process of detection software and a significant outcome is that false-positive
and false-negative errors in detection could affect the value of these systems
significantly.

In general, even though there is work on applying game-theoretic tools to

114

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

problems of security, to the best our knowledge this is the first attempt of a
game-theoretic analysis of SPIT and how to counter it with audio CAPTCHA.

7.3 Suggested Game-theoretic Model
Generalizing and building upon Androutsopoulos et al. [5][109], we define the
SpitGame, a game-theoretic model with two players: the SPIT sender (Player I)
and the legitimate VoIP user (Player II). The game is illustrated in Fig. 7.1. We
will describe the game in detail and at the same time give short definitions of
the game-theoretic terms and concepts that we encounter. For more details on
the game-theoretic terms, the reader may refer to textbooks on Game Theory
[80][79][81], or to a recent volume on Algorithmic Game Theory [77].

The SpitGame, as shown in Fig. 7.1, is an extensive form game with imperfect
information. The game is initiated whenever a new call/message is sent towards
a user. The SPIT sender (Player I) moves first and is able to interfere with
the stream of incoming calls and send a new SPIT call at any point. Thus,
the frequency with which SPIT senders initiate a malicious call determines
the average ratio of SPIT to legitimate calls in the users’ incoming streams.
For example, if a SPIT sender initiates a SPIT call every four (4) legitimate
calls, then the overall probability/rate of SPIT calls will be 𝑝 = 0.2, which is
presented as probability 𝑝 in Fig. 7.1. Although in reality SPIT senders are not
able to completely control all the incoming calls/messages, or to decide whether
or not they will insert a new SPIT message/call, the assumption that the SPIT
senders control the ratio between SPIT and legitimate calls is reasonable. A
similar assumption has been used in the game-theoretic models for SPAM in
[5][109] upon which we generalised.

The SPIT sender chooses to make the incoming call SPIT or to allow it to be
a legitimate call. The VoIP user does not learn which choice the SPIT sender has
made. That is, the VoIP user is imperfectly informed about the game status and
for this reason we model this interaction as an extensive game with imperfect
information. However, the VoIP user gets some stochastic information about the
game status from the outcome of an anti-SPIT filter. After the move of the SPIT
sender, the call is processed by anti-SPIT filters, which are able to flag the calls
they consider SPIT. The use of filters is a common countermeasure (in some cases
of Internet service providers, this is mandatorily applied to their users). We have
assumed that the filter contains a deterministic first stage and a stochastic second
stage. In the first stage, an accurate black/white-list, created from past calls,
can accept or discard the call. The second stage is invoked if the black/white-
list does not identify the caller. In this stage, the filter attempts to guess the
nature of the call from the characteristics of the call (e.g. the time/date, the

115

7.3 Suggested Game-theoretic Model

Figure 7.1: The game-theoretic model

caller domain, the user agent, etc.). In the model we describe, the filter refers
only to the second stage, since the first stage does not have a game theoretic
aspect.

In our model, the performance of these filters is fully described by six vari-
ables: 𝑓u�, ℎ2, ℎ1, 𝜖1, 𝜖2 and 𝑓u�. More specifically, in the case of legitimate calls, the
filter will classify the calls accurately with a probability of 𝑓u�, it will consider
them unknown with a probability of ℎ2 and it will misclassify them as SPIT calls
with a probability of ℎ1. In the case of SPIT calls the corresponding legitimate,
unknown and SPIT classification probabilities are 𝜖1, 𝜖2 and 𝑓u�. For example, con-
sider the case when the filter misclassifies the incoming message. In Fig. 7.1 the

116

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

probability of misclassifying a SPIT call as legitimate is depicted as 𝑆 → 𝐿 and
the probability of misclassifying a legitimate call as SPIT is depicted as 𝐿 → 𝑆.
Moreover, the filters may not be able to come to a definite conclusion over the na-
ture of the call. In this situation, the filter classifies the call as “Unknown”, which
is common in VoIP communication systems. Although this may be uncommon
in email spam filters, since the messages can be classified based on content and
header, VoIP is a real time protocol that does not grant the receiver access to the
call contents prior to its acceptance/session establishment. Therefore, when-
ever a call arrives from an unknown number, the call may be classified as SPIT
or legitimate. Since VoIP communication is synchronous, unlike email spam
where email is delivered asynchronously and the marked-as-spam messages
can be stored, if the call is rejected then there is no way for the user to retrieve its
content/purpose. Since much less information is available than in email spam,
the anti-SPIT filter should include the “Unknown” verdict, which is dominant
when a SPIT call is received, since most SPIT calls are initiated from numbers
unknown to the user.

In the context of SpitGame, after the move of the SPIT sender the filter
classifies the incoming call. The action of the filter is modelled with an artificial
third player; such a player is usually called chance in the game. Player chance
has three moves, one for each of the possible outcomes of the filter.

The user is informed about the “move” of the filter but not the move of
the SPIT sender. The user should decide his move based on the filter’s prior
classification. He is able to accept the call, reject it or request an audio CAPTCHA.
The user is not aware of the true nature of the calls before he listen to them,
so when he sees that his filter has classified a call as legitimate, he does not
know whether it was misclassified or not. For example, when a user receives
a legitimate filter-classified call it is impossible to distinguish in which node
(𝐿 → 𝐿 or 𝑆 → 𝐿) of the game he is. In game-theoretic terms, each of the possible
outcomes of the filter defines an information set for the VoIP user. Each such
set contains two nodes of the extensive-form game, because there are two nodes
in the game which may lead to the particular filter decision. The VoIP user,
however, is informed only about the information set and not about the particular
node of the set in which the game really is.

Therefore, each user has to select a strategy consisting of what he will do
with incoming calls depending only on information sets, i.e., the decisions of
his filter; for example, Accept calls classified as Legitimate, Reject calls classified
as SPIT, and request audio CAPTCHA when calls are classified as Unknown.
Similarly, we may assume that the overall community of users adopts a strategy,
whose probabilities reflect the frequencies with which it adopts actions Accept,
Reject, and CAPTCHA. That means that the sum of the probabilities of these
three actions is equal to 1 for each game node. For example, when a user

117

7.3 Suggested Game-theoretic Model

Table 7.1: Game-theoretic model utilities

User/Player II SPIT sender/Player I
Message Accept Reject CAPTCHA Accept Reject CAPTCHA
Legitimate 𝑢u� −𝑢u� 𝑢u� − 𝑢u� 0 0 0
SPIT −𝑢u� 0 0 𝑠u� −𝑠u� −𝑠u�

receives a new call, which is classified as Legitimate, then 𝑃(Accept) + 𝑃(Reject) +
𝑃(CAPTCHA) = 1, regardless of whether the message was misclassified or not.
Likewise, this happens in the other two cases: SPIT and Unknown.

Whenever a new session is initiated, the actions which the SPIT sender and
legitimate user select lead to a particular cost or utility for each player. For
example, if the SPIT sender selects to initiate a SPIT call and the user selects to
Accept the call, then the game ends with a utility of 𝑠u� > 0 for the SPIT sender
and a cost of −𝑢u� < 0 for user. In summary, every combination of actions of the
two players leads to an outcome of the game, and this outcome determines the
amount of utility for each participant, which is shown in Fig. 7.1 and Table 7.1.
Notice that the utilities for the user and SPIT sender do not depend directly on
the filter classification, however, the classification does affect the ratio between
legitimate and SPIT calls which the user receives.

The utilities for each player are determined by five parameters:

1. 𝑢u�: This is the measure of average utility of accepting a legitimate call.

2. 𝑢u�: This is the measure of average disutility of receiving a SPIT call, taking
into consideration factors such as the average cost of consumed computa-
tional resources, the time needed to answer the phone, and the average
time it takes to listen to it, which means a general decrease to user produc-
tivity.

3. 𝑢u�: This is the measure of average disutility of sending a CAPTCHA puzzle,
taking into consideration the annoyance of a legitimate caller, of whom
it is required to solve a CAPTCHA challenge in order to reach the user.
This annoyance can directly lead to profit loss if the caller is a potential
customer, but also indirectly lead to social issues if the user’s acquaintances
are reluctant or hesitant to call him.

4. 𝑠u�: This is the measure of average utility the SPIT sender obtains from
each SPIT call that is accepted, taking into consideration factors such as
the percentage of users that order products after listening to the SPIT call,
and the advertisement campaigns he may be paid to be part of.

118

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

5. 𝑠u�: This is the measure of average disutility to the SPIT sender of getting
a SPIT rejected, taking into consideration all related costs, including the
computational resources to create SPIT, and the effort to create an appro-
priate bot to execute SPIT attacks.

The parameters express a measure (or absolute value) of utility or disutility;
as such 𝑢u�, 𝑢u�, 𝑢u�, 𝑠u�, 𝑠u� > 0 and when appearing in pay-offs their sign denotes
whether they express utility (+) or disutility (-).

We assumed that the utility from accepting a legitimate call is exactly the
opposite of the cost of rejecting it. This is justified by equating the (dis)utility of
the user to the information value of the call being (rejected) accepted. Moreover,
the utility of accepting the call may be the information value of the call minus
the cost of the consumed computational resources for session establishment,
while the cost of rejecting it may be simply the information value. This cost
difference is so marginal that it was not taken into consideration.

In order to facilitate the examination and analysis of the model, we have set
a few restrictions on the costs:

1. The user’s disutility for sending a CAPTCHA (−𝑢u�) is smaller than the
user’s disutility for missing a legitimate message (−𝑢u�). In absolute terms,
𝑢u� > 𝑢u�. This means that when a user initiates a call, the process to answer
a CAPTCHA for establishing the call is not cost-forbidden.

2. The user’s disutility for sending a CAPTCHA (−𝑢u�) is smaller than the
user’s disutility of accepting a SPIT call (−𝑢u�). In absolute terms, 𝑢u� > 𝑢u�.
Otherwise, the use of CAPTCHA would have no sense, since it would be
better for the user to receive SPIT than request a CAPTCHA.

3. The user’s disutility of accepting a SPIT call (−𝑢u�) is smaller than the user’s
disutility for missing a legitimate message (−𝑢u�). In absolute terms, 𝑢u� > 𝑢u�.
This condition is based on the premise that receiving a SPIT call may be
annoying and distracting for the callee, but missing a legitimate call is
more important since it may mean loss of business opportunities, damage
to a business’ image and reputation or disruption of the user’s social life.

4. The utility for a SPIT sender to have a SPIT call accepted (𝑠u�) is larger than
the cost of having the call rejected (−𝑠u�). In absolute terms, 𝑠u� > 𝑠u�. Given
that in practice the chance of the SPIT sender making a profit from an
accepted call is very low and that the cost of making SPIT calls, due to
the way VoIP works, is also very low, it can reasonably be assumed that
the utility of having a call accepted needs to be high, at least higher that
the disutility of making the call, in order for the SPIT sender to have an

119

7.4 Game-theoretic Analysis and Nash Equilibrium

Table 7.2: Player preferences parameters

Player Parameter Description Conditions
(absolute values)

User/Player II 𝑢u� Measure of user
utility of accept-
ing legitimate call

𝑢u� > 𝑢u� > 𝑢u� > 0

𝑢u� Measure of user
disutility of ac-
cepting SPIT call

𝑢u� Measure of user
disutility of send-
ing CAPTCHA

SPIT sender/Player I 𝑠u� Measure of SPIT
sender utility of
getting a SPIT call
accepted

𝑠u� > 𝑠u� > 0

𝑠u� Measure of SPIT
sender disutility
of getting a SPIT
call rejected

incentive to make calls. In general, SPIT calls could be profitable even if
𝑠u� < 𝑠u�, if the chance of making a profit from an accepted call could be
assumed to be high enough.

The above mentioned utilities for each player actions and the relevant condi-
tions are described in Table 7.2.

7.4 Game-theoretic Analysis and Nash Equi-
librium

In this section, we present a theoretical analysis of the SpitGame. The funda-
mental solution concept for games is the Nash equilibrium (NE), i.e., a state
of the game from which no individual player has an incentive to unilaterally
deviate. The Nash equilibrium is the most popular solution concept in game
theory and has been used in the analysis of a vast number of scenarios with
interacting decision makers coming (the scenarios) from diverse application
domains including economics, biology, political science, computer science and
other ([72][77][80][79]). There are numerous applications of game theory, the

120

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

Table 7.3: The filter verdicts.

Filter verdict
Type of call Legitimate Unknown SPIT
SPIT call 𝜖1 𝜖2 𝑓u�

Legitimate call 𝑓u� ℎ2 ℎ1

Nash equilibrium concept and its refinements in Computer Security. See for
example the recent surveys [67][104] and the references therein.

Overall, the formulation of the Nash equilibrium has had a fundamental and
pervasive impact in economics and the social sciences [72] and more recently
in Computer Science [77][85]. Of course, from the development of the Nash
equilibrium concept, there have also been some critiques of it. Some of the main
critiques are that the Nash equilibrium concept makes misleading or ambiguous
predictions in certain circumstances, that it may not capture correctly non-
credible threats, that in many games there are many NE, and, more recently,
that the computation of NE is intractable in the general case [17].

However, despite these critiques, the NE and its refinements are undoubtedly
the most successful solution concept in game theory, widely used in theoretical
and practical applications of game theory. Moreover, most critiques do not seem
to apply to the NE of the SpitGame. Firstly, the SpitGame exhibits a unique NE
(except for some boundary cases) as is shown in Theorem 2. Consequently, there
is no ambiguity in the prediction of the state of the game. Moreover, the NE
of the SpitGame is computable in polynomial time via a closed form equation
(see Table 7.8) and thus, neither the critique concerning the intractability of
general NE applies in this case. As discussed later in this section, the NE of the
SpitGame is also Subgame Perfect, which removes the non-credible threat issue
of some NE. Finally, the NE solution of the SpitGame does not seem to belong
to the cases where the NE leads to counter-intuitive solutions, like for example
in the case of the Traveller’s Dilemma [9].

There are adaptations and refinements of the NE concept for different game
settings and purposes. A variation of the NE for extensive-form games is the
Subgame Perfect Equilibrium (SPE), which is more appropriate for games with
perfect information. In the SpitGame, when Player II has to decide his action
without seeing the action of Player I, that is, Player II is imperfectly informed
about the game status. However, Player II has access to the outcome of the filter,
which provides stochastic information about the action of Player I. The filter
verdicts are shown in Table 7.3. Each of the filter verdicts defines an information
set for Player II, who has to decide his action based on the information set. A

121

7.4 Game-theoretic Analysis and Nash Equilibrium

natural approach for analysing such a model is to use the concept of behavioural
strategies ([72][13], and in particular [109][5]), in which players can randomize
independently at each information set. In particular, Player II of the SpitGame
will have an independent mixed strategy for each of his information sets. A
well known fact in game theory, Kuhn’s Theorem, states that in extensive-form
games with perfect recall, behavioural and mixed strategies are equivalent. The
solution concept that we will use to solve the SpitGame is the Nash equilibrium
of the corresponding extensive form game, and we will base our analysis on the
behavioural strategies of the players.

The interaction between legitimate VoIP users and SPIT senders is a con-
tinuous challenge for both parties. Each player, call receiver or SPIT sender,
will have to make his choices repeatedly. Moreover, a legitimate caller might be
required to solve audio CAPTCHAs when he calls a VoIP user for the first time.
Such overheads may devalue the VoIP service in the eyes of legitimate callers.
One may argue that a repeated game could be used to model this interaction.
Even though one cannot (and should not) exclude such or other possible formu-
lations of the SpitGame problem, we believe that the current formulation as a
one-shot game is well suited for the problem. Each time there is an interaction
between two entities, the interaction will be unique, or at least we are only in-
terested in the unique interactions. The subsequent interactions between the
same entities can be trivially solved by the outcome of the first game. Then, the
legitimate player would know if the call is SPIT or not. The cost incurred to the
legitimate callers for solving audio CAPTCHAS is assumed to be captured by
the disutility 𝑢u�. Note that legitimate callers are not directly modelled in the
current SpitGame model. Alternatively, one may consider other game-theoretic
formulations of the same problem, for example as a repeated game and/or a
game with strategic legitimate callers being part of the model. We leave such
possibilities for future work.

We will start the analysis of the SpitGame with the following straightforward
observation that Player I will never use a pure strategy at any Nash equilibrium.

Theorem 1 The SpitGame has no Nash equilibrium where Player I plays a pure strat-
egy.

Proof 14 We will use a proof by contradiction. Assume that Player I chooses a pure
strategy, for example SPIT. Then the optimal response for Player II would be the pure
strategy Reject. Then however, Player I would be motivated to change his strategy, i.e.,
there is no NE if Player I plays SPIT. If, on the other hand, Player I chooses the pure
strategy Legitimate then Player II can respond with Accept, which makes the move of
Player I suboptimal, i.e., again no NE.

122

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

Table 7.4: The strategy of Player I at a NE

Action of Player I Probability
SPIT call p

Legitimate call 1-p

Table 7.5: The strategy of Player II at a NE

Action of Player II
Information Set
(Filter verdict) Accept CAPTCHA Reject

1 Legitimate call 𝑝1 𝑞1 𝑟1 = 1 − 𝑝1 − 𝑞1
2 Unknown 𝑝2 𝑞2 𝑟2 = 1 − 𝑝2 − 𝑞2
3 SPIT call 𝑝3 𝑞3 𝑟3 = 1 − 𝑝3 − 𝑞3

Assume a NE of the SpitGame. Let (𝑝, 1 − 𝑝) be the strategy of Player I at
the NE (Table 7.4) and let (𝑝u�, 𝑞u�, 𝑟u�) be the strategy of Player II at information set
𝑖, for 𝑖 = 1, 2, 3. Thus, at the NE, the strategy of Player I is to submit SPIT calls
with rate p, i.e., the probability that a new incoming call will be SPIT is 𝑝. From
the proof of Theorem 1 we know that at any NE

0 < 𝑝 < 1 . (7.1)

Player II has three information sets, one for each of the outcomes of the filter,
presented in Table 7.3.

Since Player II does not know which action Player I has made and the outcome
of the filter is stochastic, Player II can base his decision only on conditional
probabilities. Assume that a new call has arrived and that the corresponding
filter verdict is SPIT. Player II is informed that the information set is SPIT and has
to choose a strategy based on this information only. Let 𝑃u�u� be the conditional
probability that the incoming call is Legitimate given that the filter has classified
it as SPIT. Using standard probability theory gives

𝑃u�u� = 𝑃𝑟𝑜𝑏[𝐿/𝑆] =
(1 − 𝑝) ℎ1

(1 − 𝑝) ℎ1 + 𝑝 𝑓u�
. (7.2)

Similarly, we define and calculate the conditional probabilities for all possible
cases.

123

7.4 Game-theoretic Analysis and Nash Equilibrium

𝑃u�u� =
(1 − 𝑝) ℎ1

(1 − 𝑝) ℎ1 + 𝑝 𝑓u�
, 𝑃u�u� =

𝑝 𝑓u�
(1 − 𝑝) ℎ1 + 𝑝 𝑓u�

,

𝑃u�u� =
(1 − 𝑝) ℎ2

(1 − 𝑝) ℎ2 + 𝑝 𝜖2
, 𝑃u�u� =

𝑝 𝜖2

(1 − 𝑝) ℎ2 + 𝑝 𝜖2
,

𝑃u�u� =
(1 − 𝑝) 𝑓u�

(1 − 𝑝) 𝑓u� + 𝑝 𝜖1
, 𝑃u�u� =

𝑝 𝜖1

(1 − 𝑝) 𝑓u� + 𝑝 𝜖1
.

(7.3)

Using the above conditional probabilities of Equation 7.3 and the SpitGame
model as it is depicted in Fig. 7.1, the average utility of Player I for each of his
pure strategies can be calculated. Firstly, note that the average utility for the
pure strategy of Player I Legitimate, i.e., Player I does nothing, is

𝑈1u� = 0 . (7.4)

When Player I submits a SPIT call, then his average utility can be calculated
as follows. Given the strategy 𝑝 of Player I, let 𝑉u�(𝑝), 𝑉u�(𝑝), and 𝑉u�(𝑝) be the
probabilities that the filter verdict is Legitimate, Unknown, and SPIT respectively.
Also, given the strategy of Player II, let 𝑈1u�u�(𝑝1, 𝑞1), 𝑈1u�u�(𝑝2, 𝑞2), and 𝑈1u�u�(𝑝3, 𝑞3)
be the average utility of action SPIT of Player I in information set Legitimate,
Unknown, and SPIT respectively. Then the average utility of action SPIT of
Player I is

𝑈1u� = 𝑉u�(𝑝) 𝑈1u�u�(𝑝1, 𝑞1) + 𝑉u�(𝑝) 𝑈1u�u�(𝑝2, 𝑞2) + 𝑉u�(𝑝) 𝑈1u�u�(𝑝3, 𝑞3), (7.5)

where
𝑉u�(𝑝) = (1 − 𝑝)𝑓u� + 𝑝𝜖1,
𝑉u�(𝑝) = (1 − 𝑝)ℎ2 + 𝑝𝜖2, and
𝑉u�(𝑝) = (1 − 𝑝)ℎ1 + 𝑝𝑓u�.

(7.6)

After expanding the terms in Equation 7.5 and doing some algebraic manipula-
tion we obtain that

𝑈1u� = −𝑠u� + 𝜖1(𝑠u� + 𝑠u�)𝑝1 + 𝜖2(𝑠u� + 𝑠u�)𝑝2 + 𝑓u�(𝑠u� + 𝑠u�)𝑝3 . (7.7)

From Theorem 1 we know that Player I uses a mixed strategy at any NE. Thus,
both actions of Player I are played with strictly positive probability at any NE; in
other words, both actions of Player I belong to the support of his strategy at any
NE. A well known requirement for all actions that belong to the support of a NE
strategy, is that each of them must achieve the same average utility. Otherwise,
the user would exclude the strategies with lower average utility from his NE
strategy. We know from Equation 7.4 that 𝑈1u�, i.e., the (average) utility of action

124

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

Legitimate for Player I, is zero. Thus, the average utility of action SPIT of Player I
must also be

𝑈1u� = 0 . (7.8)

Combining the above equation with Equation 7.7 gives the following Lemma.

Lemma 1 At any NE of the SpitGame

𝜖1𝑝1 + 𝜖2𝑝2 + 𝑓u�𝑝3 =
𝑠u�

𝑠u� + 𝑠u�
. (7.9)

We now focus on the utility of Player II. Using again the conditional proba-
bilities of Equation 7.3 and the SpitGame model (Fig. 7.1), the average utility
of Player II for each of his pure strategies at each of his information sets can be
calculated. For example, in information set Legitimate, the average utility for
Player II for action Accept of an incoming call is

𝑈2u�u� = 𝑃u�u�𝑢u� + 𝑃u�u�(−𝑢u�) =
𝑓u�(1 − 𝑝)𝑢u� − 𝜖1𝑝𝑢u�

𝑓u�(1 − 𝑝) + 𝜖1𝑝 . (7.10)

Similarly, we can calculate the expected utilities 𝑈2u�u� and 𝑈2u�u� for actions
CAPTCHA and Reject. In the same way, we calculate 𝑈2u�u�, 𝑈2u�u�, and 𝑈2u�u� for
the information set Unknown, and 𝑈2u�u�, 𝑈2u�u�, and 𝑈2u�u� for the information set
SPIT.

𝑈2u�u� = u�u�(1−u�)u�u�−u�1u�u�u�
u�u�(1−u�)+u�1u� , 𝑈2u�u� = u�u�(1−u�)(u�u�−u�u�)

u�u�(1−u�)+u�1u� , 𝑈2u�u� = −u�u�(1−u�)u�u�
u�u�(1−u�)+u�1u� ,

𝑈2u�u� = ℎ2(1−u�)u�u�−u�2u�u�u�
ℎ2(1−u�)+u�2u� , 𝑈2u�u� = ℎ2(1−u�)(u�u�−u�u�)

ℎ2(1−u�)+u�2u� , 𝑈2u�u� = −ℎ2(1−u�)u�u�
ℎ2(1−u�)+u�2u� ,

𝑈2u�u� = ℎ1(1−u�)u�u�−u�u�u�u�u�
ℎ1(1−u�)+u�u�u� , 𝑈2u�u� = ℎ1(1−u�)(u�u�−u�u�)

ℎ1(1−u�)+u�u�u� , 𝑈2u�u� = −ℎ1(1−u�)u�u�
ℎ1(1−u�)+u�u�u� .

(7.11)

Now, using the notation of Tables 7.4 and 7.5 for the player strategies, and
the average utility for each of the pure strategies of Player II (Equation 7.11)
the average utility of Player II for each information set can be calculated. For
example, information set Legitimate, the average utility of Player II is

𝑈2u� = 𝑝1𝑈2u�u� + 𝑞1𝑈2u�u� + 𝑟1𝑈2u�u� . (7.12)

Similarly, for information sets Unknown and SPIT the average utility of Player II
is

𝑈2u� = 𝑝2𝑈2u�u� + 𝑞2𝑈2u�u� + 𝑟2𝑈2u�u� (7.13)

and
𝑈2u� = 𝑝3𝑈2u�u� + 𝑞3𝑈2u�u� + 𝑟3𝑈2u�u� , (7.14)

125

7.4 Game-theoretic Analysis and Nash Equilibrium

Table 7.6: The coefficients for Equation 7.15

𝑖 𝐴u� 𝐵u� 𝐶u� 𝐷u�
1 2𝑓u�𝑢u�(1 − 𝑝) − 𝜖1𝑢u�𝑝 𝑓u�(2𝑢u� − 𝑢u�)(1 − 𝑝) −𝑓u�𝑢u�(1 − 𝑝) 𝑓u�(1 − 𝑝) + 𝜖1𝑝
2 2ℎ2𝑢u�(1 − 𝑝) − 𝜖2𝑢u�𝑝 ℎ2(2𝑢u� − 𝑢u�)(1 − 𝑝) −ℎ2𝑢u�(1 − 𝑝) ℎ2(1 − 𝑝) + 𝜖2𝑝
3 2ℎ1𝑢u�(1 − 𝑝) − 𝑓u�𝑢u�𝑝 ℎ1(2𝑢u� − 𝑢u�)(1 − 𝑝) −ℎ1𝑢u�(1 − 𝑝) ℎ1(1 − 𝑝) + 𝑓u�𝑝

Table 7.7: Boundary values of 𝑝

Equation Condition Equation Condition
𝐴1 = 0, if 𝑝 = 2u�u�u�u�

2u�u�u�u�+u�1u�u�
= 𝑐1 𝐴1 = 𝐵1, if 𝑝 = u�u�u�u�

u�u�u�u�+u�1u�u�
= 𝑑1

𝐴2 = 0, if 𝑝 = 2ℎ2u�u�
2ℎ2u�u�+u�2u�u�

= 𝑐2 𝐴2 = 𝐵2, if 𝑝 = ℎ2u�u�
ℎ2u�u�+u�2u�u�

= 𝑑2

𝐴3 = 0, if 𝑝 = 2ℎ1u�u�
2ℎ1u�u�+u�u�u�u�

= 𝑐3 𝐴3 = 𝐵3, if 𝑝 = ℎ1u�u�
ℎ1u�u�+u�u�u�u�

= 𝑑3

respectively. Expanding Equations 7.12, 7.13, and 7.14, with the expressions of
Equation 7.11 gives a closed expression for the average utility of Player II at each
information set 𝑖 = 1, 2, 3. After some algebraic manipulation, and exploiting
the symmetry in the expressions for the three information sets, we obtain that
the average utility of Player II in each information set is

𝐴u�𝑝u� + 𝐵u�𝑞u� + 𝐶u�

𝐷u�
, for 𝑖 = 1, 2, 3. (7.15)

where the coefficients 𝐴u�, 𝐵u�, 𝐶u� and 𝐷u� are as defined in Table 7.6. Note that the
coefficients 𝐷u� correspond to the probabilities of each information set, as they
are defined in Equation 7.6. The coefficients 𝐴u�, 𝐵u�, 𝐶u� and 𝐷u� are functions of
the strategy 𝑝 of Player I and other variables. We focus on 𝑝 and identify the
boundary values 𝑐u� and 𝑑u� for 𝑖 = 1, 2, 3, presented in Table 7.7.

7.4.1 The Nash Equilibrium
We are now ready to determine the NE of the SpitGame. Our analysis will be
valid for a wide range of parameter values. The main assumption we make is
that

𝜖1 < 𝜖2 . (7.16)

This is a reasonable assumption which also holds for the empirical parameter
values we use in the experiments (Table 7.3). A further plausible assumption is

126

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

that the probability that the filter verdict is correct is larger than the probability
that the verdict is completely wrong. More precisely,

ℎ1 < 𝑓u� , and (7.17)

𝜖1 < 𝑓u� . (7.18)

Additionally, we assume that
ℎ2 < 𝑓u� . (7.19)

The final assumption, which is also a plausible one, states that

𝑢u� < 2 𝑢u� , (7.20)

that is, the cost for Player I to submit an audio CAPTCHA is less than twice the
utility of accepting a legitimate call. Note that a cost 𝑢u� larger than 2 𝑢u� would
make the use of audio CAPTCHAs pointless. The cost of applying an audio
CAPTCHA should actually be much lower than 2 𝑢u�.

At any NE equilibrium, the strategy of Player II, i.e., the values of 𝑝u� and
𝑞u�, must be such that the values of 𝑈2u�, 𝑈2u� and 𝑈2u� are maximized, for the
the given strategy 𝑝 of Player I. An immediate consequence is that if the some
coefficients 𝐴u� or 𝐵u� are strictly negative then the corresponding 𝑝u� or 𝑞u� will have
to be null at the NE.

For each 𝑖, we will compare the coefficients of each pair of 𝑝u� and 𝑞u�. We will
also compare the coefficients of all 𝑝u� with each other. In Table 7.7 the boundary
values of 𝑝 to satisfy specific equations on the coefficients 𝐴u� and 𝐵u� are given.
For 𝑝 = 𝑐1, the coefficient of 𝑝1 in Equation 7.15 for 𝑖 = 1 becomes 𝐴1 = 0. Note,
that if 𝑝 > 𝑐1 then 𝐴1 < 0, and if 𝑝 < 𝑐1, then 𝐴1 > 0. Similarly, if 𝑝 = 𝑑1 then
𝐴1 = 𝐵1, if 𝑝 > 𝑑1, then 𝐴1 < 𝐵1, and if 𝑝 < 𝑑1, then 𝐴1 > 𝐵1. Similar statements
hold for coefficients 𝐴2, 𝐵2, 𝐴3 and 𝐵3.

Some observations about the relations between the boundary values of 𝑝 are
in order. Using Equations 7.16, 7.17, 7.18, and 7.19 we obtain that

𝑐1 > 𝑐2 and 𝑐1 > 𝑐3 . (7.21)

Similarly, we obtain
𝑑1 > 𝑑2 and 𝑑1 > 𝑑3 . (7.22)

Using Equation 7.20 we immediately obtain that

𝑑u� < 𝑐u�, for 𝑖 = 1, 2, 3. (7.23)

and
𝐵u� > 0, for 𝑖 = 1, 2, 3. (7.24)

127

7.4 Game-theoretic Analysis and Nash Equilibrium

We can also make some observations about the strategy of Player II. An
immediate consequence of Equation 7.9 is that

𝑝1 + 𝑝2 + 𝑝3 > 0 . (7.25)

Thus, at least one of the 𝐴u� must be ≥ 0. This, in turn, implies that 𝑝 ≤
min{𝑐1, 𝑐2, 𝑐3} = 𝑐1. Moreover, from Equation 7.24 we know that all coefficients
𝐵u� are strictly positive. This implies that

𝑝u� + 𝑞u� = 1 for 𝑖 = 1, 2, 3. (7.26)

In other words, the action Reject is not used by Player II at any NE. A careful
look at the SpitGame in Fig. 7.1 reveals that action Reject of Player II is weakly
dominated by his action CAPTCHA. This means, that the utility of action Reject
is less than or equal and in some cases strictly less than the utility of action
CAPTCHA. However, this observation alone would not be sufficient to exclude
action Reject from NE strategies. There are well known examples of games
having NE where players use also weakly dominated strategies.

Finally, let 𝜎 be
𝜎 = 𝑠u�/(𝑠u� + 𝑠u�) . (7.27)

7.4.1.1 Case Analysis
We are now ready to obtain the NE of the SpitGame.
Case 1: 𝜖1 ≥ 𝜎
Let us first consider the case 𝜖1 > 𝜎 . From Equation 7.9 we obtain that 𝑝1 < 1.
Thus in Equation 7.12 we have 𝑝1 > 0 and 𝑞1 > 0. Recall, that values of 𝑝1 and
𝑞1 at a NE have to maximize the utility 𝑈2u�. The only way the expression 𝑈2u� is
maximized for 𝑝1 and 𝑞1 both strictly positive is if 𝐴1 = 𝐵1 ≥ 0. To have 𝐴1 = 𝐵1,
it must hold that 𝑝 = 𝑑1. Moreover, the corresponding value of 𝐴1 and 𝐵1 for
𝑝 = 𝑑1 is strictly positive from Equation 7.24. Thus, the SpitGame has a single
NE equilibrium at 𝑝 = 𝑑1. Moreover, for 𝑝 = 𝑑1, we have 𝐴2 < 𝐵2 and 𝐴3 < 𝐵3.
Consequently, 𝑝2 = 𝑝3 = 0, and thus 𝑞2 = 𝑞3 = 1. Using Equation 7.7 we get
𝑝1 = u�

u�1
.

We will now obtain the same results for the case 𝜖1 = 𝜎 . First we will show
that 𝑝1 = 1. Assume, 𝑝1 < 1. Then 𝑞1 > 0 ⇒ 𝐴1 = 𝐵1 and, thus 𝑝 = 𝑑1.
Moreover, for 𝑝 = 𝑑1, we have 𝐴2 < 𝐵2 and 𝐴3 < 𝐵3. Consequently, 𝑝2 = 𝑝3 = 0.
At the same time, using 𝑝1 < 1 in Equation 7.9 gives 𝑝2 + 𝑝3 > 0, a contradiction
with the previous result. Thus, in this case 𝑝1 = 1. From 𝑝1 = 1, we obtain
𝑝2 = 𝑝3 = 0, 𝑞1 = 0, and 𝑞2 = 𝑞3 = 1.

Thus, for the case of 𝜖1 ≥ 𝜎 , the SpitGame has the following unique NE

128

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

𝑝 𝑝1 𝑞1 𝑝2 𝑞2 𝑝3 𝑞3
𝑑1

u�
u�1

1 − 𝑝1 0 1 0 1

Note that we do not show the values of the 𝑟u� for the SpitGame, since their value
will always be zero, as discussed earlier.
Case 2: 𝜖1 < 𝜎
We have to further distinguish three sub-cases based on the relation of the ratios
𝜖2/ℎ2 and 𝑓u�/ℎ1.
Case 2.1: 𝜖2/ℎ2 < 𝑓u�/ℎ1
The inequality 𝜖2/ℎ2 < 𝑓u�/ℎ1 implies that

𝑐2 > 𝑐3 and 𝑑2 > 𝑑3 . (7.28)

Case 2.1.1: 𝜖1 < 𝜎 < 𝜖1 + 𝜖2
In this case, if 𝑝1 would be 𝑝1 < 1, then (as in the case 𝜖1 > 𝜎) we would have
𝑝2 = 𝑝3 = 0. However, then Equation 7.9 would be infeasible. Thus,

𝑝1 = 1 , 𝑞1 = 0 . (7.29)

If 𝜖1 = 𝜎 , then from Equations 7.29 and 7.9, we again conclude that 𝑝2 = 𝑝3 = 0.
If 𝜖1 > 𝜎 , then for the same reason it must hold 𝑝2 + 𝑝3 > 0, that is, at least
one of 𝑝2 and 𝑝3 must be strictly positive (because else Equation 7.9 would be
infeasible).

If 𝐴2 > 𝐵2 ⇒ 𝑝2 = 1. This, however, makes Equation 7.9 on 𝑝1, 𝑝2 and
𝑝3, infeasible. The case 𝐴2 < 𝐵2 is also not feasible, because then we would
have 𝑝2 = 0 and 𝑞2 = 1, which would again make Equation 7.9 infeasible.
Consequently, it must hold 𝐴2 = 𝐵2 and consequently 𝑝 = 𝑑2.

Thus, the NE for Case 2.1.1 is
𝑝 𝑝1 𝑞1 𝑝2 𝑞2 𝑝3 𝑞3
𝑑2 1 0 u�−u�1

u�2
1 − 𝑝2 0 1

Case 2.1.2: 𝜖1 + 𝜖2 ≤ 𝜎 .
Assume that 𝐴3 > 𝐵3. Then, 𝐴3 > 𝐵3 ⇒ 𝑝 < 𝑑3 ⇒ 𝑝 < 𝑑2 ⇒ 𝐴2 > 𝐵2 ⇒ 𝑝2 =
𝑝3 = 1. In this case the strategy of Player II would be always Accept, which is
not a NE strategy (Player I would simply respond always with SPIT). Thus 𝐴3
cannot be smaller than 𝐵3. The case 𝐴3 < 𝐵3 is also not possible, because it
would imply 𝑝3 = 0, which in turn would make Equation 7.9 infeasible. From
the above arguments, we conclude that

𝐴3 = 𝐵3 . (7.30)

129

7.4 Game-theoretic Analysis and Nash Equilibrium

Thus, in this case, 𝐴1 > 𝐵1, 𝐴2 > 𝐵2 and 𝐴3 = 𝐵3 and consequently

𝑝 = 𝑑3 . (7.31)

The overall NE is
𝑝 𝑝1 𝑞1 𝑝2 𝑞2 𝑝3 𝑞3
𝑑3 1 0 1 0 u�−u�1−u�2

u�u�
1 − 𝑝3

Case 2.2: 𝜖2/ℎ2 > 𝑓u�/ℎ1.
The inequality 𝜖2/ℎ2 > 𝑓u�/ℎ1 implies that

𝑐2 < 𝑐3 and 𝑑2 < 𝑑3 . (7.32)

A simple adaptation of the analysis of the cases 2.1.1 and 2.1.2 gives the following
results for cases 2.2.1 and 2.2.2, respectively.
Case 2.2.1: 𝜖1 < 𝜎 < 𝜖1 + 𝜖2
In this case, 𝑝 = 𝑑3 and the overall NE is

𝑝 𝑝1 𝑞1 𝑝2 𝑞2 𝑝3 𝑞3
𝑑3 1 0 0 1 u�−u�1

u�u�
1 − 𝑝3

Case 2.2.2: 𝜖1 + 𝜖2 ≤ 𝜎 .
In this case, 𝑝 = 𝑑2 and the overall NE is

𝑝 𝑝1 𝑞1 𝑝2 𝑞2 𝑝3 𝑞3

𝑑2 1 0 u�−u�1−u�u�
u�2

1 − 𝑝2 1 0

Case 2.3: 𝜖2/ℎ2 = 𝑓u�/ℎ1.
In this case,

𝑑2 = 𝑑3 and 𝑐2 = 𝑐3 . (7.33)

The case 𝑝1 < 1 can easily be excluded, because it would imply 𝑝2 = 𝑝3 = 0,
making Equation 7.9 infeasible. Thus, we conclude that 𝑝1 = 1. From Equa-
tion 7.9 we obtain that 𝑝2 + 𝑝3 > 0. Any pair of values 𝑝2 and 𝑝3 satisfying
𝜖2𝑝2 + 𝑓u�𝑝3 = 𝜎 − 𝜖1 gives a NE. In this case the SpitGame has the following
continuous range of NE

𝑝 𝑝1 𝑞1 𝑝2 𝑞2 𝑝3 𝑞3
𝑑2 1 0 𝑝2 1 − 𝑝2

u�−u�1−u�2u�2
u�u�

1 − 𝑝3

where 𝑑2 = 𝑑3 and the range of values for 𝑝2 is

max{0,
𝜎 − 𝜖1 − 𝑓u�

𝜖2
} ≤ 𝑝2 ≤

𝜎 − 𝜖1 − 𝑓u� max{0, u�−u�1−u�2
u�u�

}
𝜖2

. (7.34)

From the above case analysis of the SpitGame we conclude that:

130

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

Theorem 2 The SpitGame has a unique NE equilibrium for the assumptions made
earlier except for the Case 2.3. The closed forms of the NE for each case are summarized
in Table 7.8.

7.4.2 The NE without Audio CAPTCHAs
We examine now the NE of the SpitGame if users did not have the option to
use audio CAPTCHAs. We can assume that the action CAPTCHA is removed
from the game or equivalently that 𝑢u� > 2 𝑢u�. If 𝑢u� > 2 𝑢u�, then all coefficients 𝐵u�
would be negative

𝐵u� < 0 for 𝑖 = 1, 2, 3. (7.35)
and consequently the probability of submitting an audio CAPTCHA would be
𝑞u� = 0, for all infomation sets. We will call the model without audio CAPTCHAs
SpitGame′.

From Equations 7.25 and 7.21 we obtain that in the SpitGame′ the strategy
of Player I satisfies 𝑝 ≤ max{𝑐1, 𝑐2, 𝑐3} = 𝑐1.
Case 1: 𝜖1 ≥ 𝜎
Let us first consider the case 𝜖1 > 𝜎 . From Equation 7.9 we obtain that 𝑝1 < 1.
Thus in Equation 7.12 we have 𝑝1 > 0 and 𝑞1 > 0. Recall, that the values of 𝑝1
and 𝑞1 at any NE have to maximize the utility 𝑈2u�. Given that 𝐵1 < 0, the only
way the expression 𝑈2u� is maximized for 𝑝1 and 𝑞1 both strictly positive is if
𝐴1 = 0. This requires that 𝑝 = 𝑐1.

Since 𝑝 = 𝑐1 implies 𝐴2 < 0 and 𝐴3 < 0, we obtain that 𝑝2 = 𝑝3 = 0 (and
thus 𝑟2 = 𝑟3 = 1). Using this in Equation 7.9 we obtain that 𝑝1 = u�

u�1
.

Thus, the SpitGame′ has the following unique NE

𝑝 𝑝1 𝑟1 𝑝2 𝑟2 𝑝3 𝑟3
𝑐1

u�
u�1

1 − 𝑝1 0 1 0 1

There is an evident analogy with the corresponding NE of the original SpitGame.
The strategy of Player I is 𝑐1 instead of 𝑑1, while the strategy of Player II is the
same if we swap the values of 𝑞u� and 𝑟u�. In Section 7.4.3 we will show that the
probability of SPIT calls 𝑐1 is 𝑐1 > 𝑑1, for 𝑢u� < 2𝑢u�. That is, the rate of SPIT calls
in the SpitGame′ is increased in comparison with the corresponding case of the
SpitGame. We will also compare the corresponding utilities of Player II in both
models.

Working in the same way it is straightforward to adapt the rest of the analysis
of the original SpitGame to the SpitGame′. The results are presented below.
Case 2: 𝜖1 < 𝜎
Case 2.1: 𝜖2/ℎ2 < 𝑓u�/ℎ1

131

7.4 Game-theoretic Analysis and Nash Equilibrium

Case 2.1.1: 𝜖1 < 𝜎 < 𝜖1 + 𝜖2
𝑝 𝑝1 𝑟1 𝑝2 𝑟2 𝑝3 𝑟3
𝑐2 1 0 u�−u�1

u�2
1 − 𝑝2 0 1

Case 2.1.2: 𝜖1 + 𝜖2 ≤ 𝜎 .
𝑝 𝑝1 𝑟1 𝑝2 𝑟2 𝑝3 𝑟3
𝑐3 1 0 1 0 u�−u�1−u�2

u�u�
1 − 𝑝3

Case 2.2: 𝜖2/ℎ2 > 𝑓u�/ℎ1.
𝑝 𝑝1 𝑟1 𝑝2 𝑟2 𝑝3 𝑟3
𝑐3 1 0 0 1 u�−u�1

u�u�
1 − 𝑝3

Case 2.2.2: 𝜖1 < 𝜎 < 𝜖1 + 𝜖2.
𝑝 𝑝1 𝑟1 𝑝2 𝑟2 𝑝3 𝑟3

𝑐2 1 0 u�−u�1−u�u�
u�2

1 − 𝑝2 1 0

Case 2.3: 𝜖2/ℎ2 = 𝑓u�/ℎ1.
𝑝 𝑝1 𝑟1 𝑝2 𝑟2 𝑝3 𝑟3
𝑐2 1 0 𝑝2 1 − 𝑝2

u�−u�1−u�2u�2
u�u�

1 − 𝑝3

where 𝑐2 = 𝑐3 and the range of values for 𝑝2 is

max{0,
𝜎 − 𝜖1 − 𝑓u�

𝜖2
} ≤ 𝑝2 ≤

𝜎 − 𝜖1 − 𝑓u� max{0, u�−u�1−u�2
u�u�

}
𝜖2

. (7.36)

The closed forms of the NE for all cases of the SpitGame and the SpitGame′

are summarized in Table 7.8.

7.4.3 The Benefit of Supporting Audio CAPTCHAs
We can now compare the NE of the SpitGame and the SpitGame′ in order to
assess the effect of audio CAPTCHAs on the properties of the corresponding
NE. We are interested in the rate of SPIT calls at the NE and the corresponding
utility of Player II, the VoIP user.

Note that the strategy of Player I is always some value 𝑑u�, for 𝑖 ∈ {1, 2, 3}
in the SpitGame, and 𝑐u� for the same index value of 𝑖 in the corresponding
SpitGame′. Using Equation 7.20 it is straightforward to show that 𝑐u� > 𝑑u�, for
any 𝑖 ∈ {1, 2, 3}, which implies a reduced rate of SPIT calls at the NE of the
SpitGame. For example the ratio 𝑐1/𝑑1 is

𝑐1/𝑑1 =
2𝑢u�(𝑓u�𝑢u� + 𝜖1𝑢u�)
𝑢u�(2𝑓u�𝑢u� + 𝜖1𝑢u�)

> 1. (7.37)

Similarly, the ratios 𝑐2/𝑑2 and 𝑐3/𝑑3 can also be shown to be larger than 1.

132

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

Theorem 3 At NE, the rate of SPIT calls is strictly less when users have the option to
submit audio CAPTCHA’s.

The utility of Player II at any NE of the SpitGame is larger than in the NE of the
corresponding SpitGame. For example, the difference of the utility of Player II
in Case 1 of the SpitGame minus the utility of the NE of the corresponding NE
in the SpitGame′ is

𝑈2 − 𝑈′
2 =

𝜖1ℎ2(2𝑢u� − 𝑢u�)𝑢u�(𝑓u�𝑢u� + 𝜖1𝑢u�)
(𝑓u�𝑢u� + 𝜖1𝑢u�)(2𝑓u�𝑢u� + 𝜖1𝑢u�)

> 0. (7.38)

Note, that we use the difference for the utilities instead of the ratio, because
Player II may have a negative utility in the SpitGame′. For Case 2.1.1 the differ-
ence is

𝑈2 − 𝑈′
2 =

𝜖2ℎ2(2𝑢u� − 𝑢u�)𝑢u�(ℎ2𝑢u� + 𝜖2𝑢u�)
(ℎ2𝑢u� + 𝜖2𝑢u�)(2ℎ2𝑢u� + 𝜖2𝑢u�)

> 0. (7.39)

In the same way, the difference of the utilities of Player II at NE in the SpitGame
and the SpitGame′ can be shown to be positive for the remaining cases of the
game.

Theorem 4 At NE, the utility of Player II is larger in the SpitGame than in the corre-
sponding SpitGame′.

7.5 Experimental Study
For the experimental analysis we produce the theoretically predicted Nash
Equilibria properties independently from the theoretical analysis. We have
selected realistic values for the filter’s ability to discern legitimate calls from
SPIT calls based on the analysis performed in Sections 3 and 4. The experimental
analysis was performed for three filter specification cases, shown in Table 7.9,
and for each case we examined the NE of both SpitGame and SpitGame′.

The first filter specification case represents the most realistic case: the filter
has significant difficulties in identifying SPIT calls resulting in a large percentage
of SPIT calls being classified as Unknown, but can classify legitimate calls with
relatively high accuracy. The second filter specification represents the conditions
in a large organisation which receives calls from a large pool of people. As a
result, it tends to classify both SPIT and legitimate calls as Unknown. The third
filter specification represents a smaller organisation with a much smaller pool
of frequent callers. Therefore, it tends to identify SPIT and legitimate calls much
more accurately than in the previous two cases.

133

7.5 Experimental Study

Table 7.8: The NE of SpitGame and SpitGame′ (without CAPTCHAs).
The ranges of values for 𝑝2 in case 2.3 of SpitGame and 2.3 of SpitGame′

are given in Equations 7.34 and 7.36, respectively.

Player II (Information Sets)
Player I Legitimate Unknown SPIT

SpitGame Case 𝑝 1 − 𝑝 𝑝1 𝑞1 𝑟1 𝑝2 𝑞2 𝑟2 𝑝3 𝑞3 𝑟3
1 𝜖1 ≥ 𝜎 𝑑1(1 − 𝑑1) u�

u�1
1 − u�

u�1
0 0 1 0 0 1 0

2 𝜖1 < 𝜎
2.1 𝜖2/ℎ2 < 𝑓u�/ℎ1
2.1.1 𝜖1 + 𝜖2 > 𝜎 𝑑2(1 − 𝑑2) 1 0 0 u�−u�1

u�2
1 − 𝑝2 0 0 1 0

2.1.2 𝜖1 + 𝜖2 ≤ 𝜎 𝑑3(1 − 𝑑3) 1 0 0 1 0 0 u�−u�1−u�2
u�u�

1 − 𝑝3 0
2.2 𝜖2/ℎ2 > 𝑓u�/ℎ1
2.2.1 𝜖1 + 𝜖2 > 𝜎 𝑑3(1 − 𝑑3) 1 0 0 0 1 0 u�−u�1

u�u�
1 − 𝑝3 0

2.2.2 𝜖1 + 𝜖2 ≤ 𝜎 𝑑2(1 − 𝑑2) 1 0 0 u�−u�1−u�u�
u�2

1 − 𝑝2 0 1 0 0
2.3 𝜖2/ℎ2 = 𝑓u�/ℎ1 𝑑2(1 − 𝑑2) 1 0 0 𝑝2 1 − 𝑝2 0 u�−u�1−u�2u�2

u�u�
1 − 𝑝3 0

SpitGame′ Case 𝑝 1 − 𝑝 𝑝1 𝑞1 𝑟1 𝑝2 𝑞2 𝑟2 𝑝3 𝑞3 𝑟3
1 𝜖1 ≥ 𝜎 𝑐1 (1 − 𝑐1) u�

u�1
0 1 − u�

u�1
0 0 1 0 0 1

2 𝜖1 < 𝜎
2.1 𝜖2/ℎ2 < 𝑓u�/ℎ1
2.1.1 𝜖1 + 𝜖2 > 𝜎 𝑐2 (1 − 𝑐2) 1 0 0 u�−u�1

u�2
0 1 − 𝑝2 0 0 1

2.1.2 𝜖1 + 𝜖2 ≤ 𝜎 𝑐3 (1 − 𝑐3) 1 0 0 1 0 0 u�−u�1−u�2
u�u�

0 1 − 𝑝3
2.2 𝜖2/ℎ2 > 𝑓u�/ℎ1
2.2.1 𝜖1 + 𝜖2 > 𝜎 𝑐3 (1 − 𝑐3) 1 0 0 0 1 0 u�−u�1

u�u�
0 1 − 𝑝3

2.2.2 𝜖1 + 𝜖2 ≤ 𝜎 𝑐2 (1 − 𝑐2) 1 0 0 u�−u�1−u�u�
u�2

0 1 − 𝑝2 1 0 0
2.3 𝜖2/ℎ2 = 𝑓u�/ℎ1 𝑐2 (1 − 𝑐2) 1 0 0 𝑝2 0 1 − 𝑝2

u�−u�1−u�2u�2
u�u�

0 1 − 𝑝3

Table 7.9: The experimental filter verdicts.

Filter verdict
Filter Specification Type of call Legitimate Unknown SPIT

1 SPIT 0.1 0.6 0.3
Legitimate 0.7 0.25 0.05

2 SPIT 0.1 0.6 0.3
Legitimate 0.3 0.6 0.1

3 SPIT 0.05 0.25 0.7
Legitimate 0.7 0.25 0.05

In order to reduce the original problem from a 5D parameter space into an
equivalent 3D exploration space we take advantage of the conditions on the

134

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

parameters shown in Table 7.2 to set 𝑢u� = 100 and 𝑠u� = 100. In order to further
reduce the number of problem instances to solve, we take integral values for
𝑢u�, 𝑢u� and 𝑠u�. The restrictions convert the original 5D parameter space into a 3D
exploration space shown in Table 7.10. Additionally, we performed adaptive
exploration of the games for values of 𝑠u� near the boundary conditions for each
case.

We automatically computed the Nash equilibria of these games using the
gambit-lcp program supplied with Gambit [68] and fitted the resulting data to
functions independently from the theoretical analysis.

7.5.1 Experimental Results & Discussion
The first result is that the Nash equilibria are unique, i.e., for each set of distinct
values of 𝑢u�, 𝑢u� and 𝑠u�, the game produces exactly one Nash equilibrium. This
has also significantly simplified our results and their analysis. It also means
that there are no other equilibriums, with potentially worse outcomes for the
user, for the game. As a result, the user’s selection of strategies, given the SPIT
sender’s pay-offs always leads to exactly one equilibrium state. We have also
verified empirically the validity of Theorem 1, by finding that all the NE, in all
game instances, are mixed.

Another interesting result is the percentage of legitimate calls that the SPIT
sender decides on (or conversely, the percentage of SPIT calls, as they are com-
plementary) in the NE as a function of 𝑢u� and 𝑢u�. In the filter specification cases 1
and 2 there are two 𝑠u� value groups (1 ≤ 𝑠u� ≤ 11.1 and 11.1 < 𝑠u� ≤ 99), while filter
specification case 3 has three 𝑠u� value groups (1 ≤ 𝑠u� ≤ 5.263, 5.263 < 𝑠u� < 42.86
and 42.86 < 𝑠u� ≤ 99). These results are shown in Fig. 7.2.

These 𝑠u� value groupings are correspond to the two base cases (1 and 2)
illustrated in Table 7.8 for both SpitGame and SpitGame′. As an example, for
the first filter specification and for case 1 in Table 7.8:

𝜖1 ≥ 𝜎 ⇔
0.1 ≥ 𝑠u�/(𝑠u� + 𝑠u�) ⇔
0.1 ≥ 𝑠u�/(100 + 𝑠u�) ⇔
11.1 ≥ 𝑠u�

Case 2 is the complement of case 1, so 11.1 < 𝑠u�.

Table 7.10: Solution exploration space

us × uc × sr = # Instances
2 … 99 1 … 𝑢u� − 1 1 … 99 ∼ 500000

135

7.5 Experimental Study

Filter
Spec. % of Legitimate calls

1

2

3

Figure 7.2: % of legitimate calls ((1 − 𝑝) ∗ 100) (function of 𝑢u� and 𝑢u� for the 𝑠u�
value groups)

In these Nash Equilibria and within each of the value groups for 𝑠u� the
percentage of legitimate calls as a function of 𝑢u�, 𝑢u� is identical. Realistically, the
actual 𝑠u� value for SPIT senders will be relatively low and probably ≤ 11.1 (i.e.,
the cost of attempting a SPIT call is ≤ 11.1% of the value gained if the SPIT call
goes through) given the resources needed to make SPIT calls. The difference
between the value groups pertains to the rate with which the percentage of

136

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

Filter Absolute

Spec. Fitted functions for % of legitimate calls Fitting Error

1 𝐿1 (𝑢u�, 𝑢u�) = u�u�
u�u�+u�u�u�

, 𝛼 =
⎧{
⎨{⎩

7, 1 ≤ 𝑠u� ≤ 11.1 (1)

0.416, 11.1 < 𝑠u� ≤ 99 (2.1.1)
≤ 5.2 × 10−11

2 𝐿2 (𝑢u�, 𝑢u�) = u�u�
u�u�+u�u�u�

, 𝛼 =
⎧{
⎨{⎩

3, 1 ≤ 𝑠u� ≤ 11.1 (1)

1, 11.1 < 𝑠u� ≤ 99 (2.1.1)
≤ 5.01 × 10−11

3 𝐿3 (𝑢u�, 𝑢u�) = u�u�
u�u�+u�u�u�

, 𝛼 =

⎧{{{
⎨{{{⎩

14, 1 ≤ 𝑠u� ≤ 5.263 (1)

1, 5.263 < 𝑠u� < 42.86 (2.1.1)

0.0714, 42.86 ≤ 𝑠u� ≤ 99 (2.1.2)

≤ 5.14 × 10−11

Table 7.11: Fitted functions for % of legitimate calls ((1 − 𝑝) ∗ 100) (function of
𝑢u� and 𝑢u� for the 𝑠u� value groups)

the legitimate calls decreases in relation to 𝑢u� and 𝑢u�. The figure illustrates that
as the cost of deploying the CAPTCHA mechanism increases, the number of
SPIT calls also increases (legitimate percentage decreases). At the same time,
as the disutility of accepting SPIT calls (𝑢u�) increases for the user, the number
of legitimate calls increases, purportedly due to the increase in CAPTCHA use
providing a strong disincentive to the SPIT sender.

The percentage [0.0 − 1.0] of legitimate calls as a function of 𝑢u� and 𝑢u� has
been fitted to the functions 𝐿1, 𝐿2, 𝐿3 as shown in Table 7.11, which are identical
to the ones produced in the theoretical analysis. For each of the fitted function
cases, we have parenthesised its corresponding case in the NE Table 7.8.

7.5.2 Comparison of SpitGame and SpitGame′

In order to examine whether the use of the CAPTCHA challenge provides
benefits to the users, we created a game model where all the CAPTCHA challenge
actions have been removed (SpitGame′) and only Accept and Reject actions are
present. Using the same value ranges for 𝑢u�, 𝑢u�, 𝑠u�, 𝑠u� and disregarding 𝑢u� (since
there are no CAPTCHA challenges present) we performed the same experiments
at the same granularity as before. Our findings from comparing the model
without CAPTCHA (SpitGame′) to the model with CAPTCHA (SpitGame) are
summarized in Table 7.12.

The use of CAPTCHA leads in to notable improvements to the percentage
of legitimate calls since in no case does the percentage of legitimate calls drop.
The improvement in percentage of legitimate calls is shown in Fig. 7.3. It is
notable that for the filter specifications 1 and 2 when 𝑠u� ≤ 11.1 and for the filter

137

7.5 Experimental Study

Table 7.12: Major findings from comparison of models with (SpitGame) and
without CAPTCHA (SpitGame′) in NE

Filter
Spec. Property Model Min Max Min Max Min Max

1 ≤ sr ≤ 11.1 11.1 < sr ≤ 99

1

Legit. SpitGame 12.60% 93.45% 70.79% 99.58%
Calls SpitGame′ 0.14% 6.60% 2.34% 54.30%
User SpitGame 0.13 92.52 46.85 99.24

Utility SpitGame′ -6.60 -0.14 0.74 17.19

1 ≤ sr ≤ 11.1 11.1 < sr ≤ 99

2

Legit. SpitGame 25.19% 97.06% 50.25% 99.00%
Calls SpitGame′ 0.33% 14.16% 0.99% 33.11%
User SpitGame 0.50 0.96 10.86 98.2

Utility SpitGame′ -14.16 -0.33 -19.87 -0.59

1 ≤ sr ≤ 5.263 5.263 < sr < 42.86 42.86 ≤ sr ≤ 99

3

Legit. SpitGame 6.73% 87.61% 50.25% 99.00% 93.40% 99.93%
Calls SpitGame′ 0.07% 3.42% 0.99% 33.11% 12.28% 87.39%
User SpitGame 0.13 86.73 33.02 98.65 86.86 99.86

Utility SpitGame′ -3.42 -0.07 0.30 9.93 10.53 74.91

specification 3 when 𝑠u� ≤ 5.263, the CAPTCHA-less model performs so badly
that the measure of improvement is almost identical to the performance of the
model with CAPTCHA.

Further discoveries include the fact that for the first filter specification, for all
values of 𝑠u�, when the filter identifies a call as SPIT, only the CAPTCHA action
is used (never Reject or Accept). Also, even when the call is identified as either
Legitimate or Unknown, the Reject action is never used. Furthermore, when the
filter identifies a call as Legitimate and 𝑠u� > 11.1 the user always selects Accept.
Finally, when the filter identifies a call as Unknown and 𝑠u� ≤ 11.1 the user never
selects Accept. These discoveries, summarized in Table 7.13, mean that for the
more realistic values of 𝑠u� (≤ 11.1) the Accept action can be removed without
impact when the filter identifies a call as Unknown or SPIT.

138

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

Filter
Spec. Improvement (absolute difference) of % of legitimate calls

1

2

3

Figure 7.3: Improvement (absolute difference) of % of legitimate calls with
CAPTCHA (SpitGame) vs. without CAPTCHA (SpitGame′)

7.6 Conclusions and future work
Spam over Internet Telephony is a significant threat for VoIP communications,
which may become a serious problem just like ordinary spam is for email. In
this work, we focused on the strategic interaction between SPIT senders and

139

7.6 Conclusions and future work

Table 7.13: Summary of actions used based on filter call identification and the
value 𝑠u� in the first filter specification case

Call identified as Actions Used
1 ≤ sr ≤ 11.1 11.1 < sr ≤ 99

Legitimate Accept, CAPTCHA Accept
Unknown CAPTCHA Accept, CAPTCHA
SPIT CAPTCHA CAPTCHA

legitimate VoIP users. We assumed the existence of incoming call filters and
effective audio CAPTCHAs and armed the VoIP users with the option to accept
an incoming call, to reject it or to request an audio CAPTCHA based on a filter’s
verdict.

The main contribution of our work is the derivation of game-theoretic model
that captures the interaction of independent, selfish SPIT senders and VoIP users.
Through theoretical arguments and a comprehensive experimental analysis we
studied the properties of the proposed game and identified its Nash equilibria.

The outcomes of our approach show that the use of the above mentioned de-
fensive mechanisms lead to desirable Nash equilibria, where audio CAPTCHAs
contribute to the utility of the legitimate users. Moreover, if the user and SPIT
sender pay-offs are known, then the game always leads to exactly one equilib-
rium state with predictable characteristics.

In is noteworthy that in our model we allow for the attacker (SPIT user) to
already know the performance characteristics of our filter. As a result, we are
not vulnerable to attacks which would uncover the filter’s characteristics. In
addition, at NE, all players, hence SPIT senders too, have full knowledge of the
strategies of their opponents, but still cannot achieve a better outcome. This
means that in our approach we are not attempting to secure through obscurity.

The game-theoretic model of this work can be extended in several aspects to
capture more properties of the real problem. An interesting topic for further
research could be to refine the audio CAPTCHAs, for example, with additional
parameters to model the solvability of the audio CAPTCHA. We have assumed
here that the audio CAPTCHA are always solvable by a legitimate user and
never solvable by a SPIT sender (automated SPIT application). New research
works [12][100] have proven that about 10% of the humans are unable to solve
them and that the success rate of the bots is about 5%. This new parameter

140

Chapter 7: A Game-theoretic Analysis of Preventing Spam over Internet
Telephony via Audio CAPTCHA-based Authentication

would cover these edge cases.
Building upon the theoretical arguments and the experimental results pre-

sented here, we plan to work on performing a complete theoretical analysis of
the SpitGame [38]. As part of this analysis, we plan to investigate how different
filter parameters influence the Nash equilibria and lead the VoIP users and the
SPIT sender to adjust their behaviour. This will aid in further informing the
decisions on trade-offs when implementing real CAPTCHA-based anti-SPIT
systems.

141

CHAPTER 8

Conclusions and Directions

Efficient resource allocation on the Internet is critical due to the continuously
growing demands of the users. In order to ensure sustained operation under
the demands of independent and selfish users, Quality of Service mechanisms
are used. The design and analysis of QoS mechanisms is a suitable field for the
application of game theory, due to the nature of the problem the mechanisms
pose to solve.

In this work we proposed several solutions to the QoS mechanism problem
utilising game-theoretic modelling and analysis while the core aim was to in-
vestigate if (fiat) money can be used as a tool for coordination between selfish
packets. Specifically, we initially designed and experimentally evaluated three
variants of an active queue mechanism which allocates throughput in a distri-
bution resembling MaxMin fairness to both responsive and unresponsive flows.
We then implemented a data structure and associated algorithms which allow
the efficient implementation of the best-performing variant of the Prince queue
mechanism.

Aiming to implement a more general QoS mechanism, we designed and eval-
uated PacketEconomy, a network economy utilising money to facilitate router
queue position exchanges between waiting packets in order to self-regulate
access to the common resource. The analysis of this mechanism proves the exis-
tence of Nash equilibria where packets participate in the market and a simple
network performance evaluation provides evidence that the QoS functionality
is implemented.

In order to more rigorously verify the basic idea put forth in PacketEconomy,
we examine it in the context of the OMNET++ discrete event simulator and
using the INET network simulation library, adapting the theoretical model to
the requirements of the realistic network environment. The thorough experi-

143

ments cover multiple cases and show that both the game-theoretic incentive
to participate is preserved and also that the QoS functionality is flexible and
consistent.

Building on our experience with game-theoretic analysis, we also model and
analyse the problem of access to a VoIP service in the context of preventing Spam
over Internet Telephony using CAPTCHA challenges. The game-theoretic results
show both analytically and experimentally that spam can be prevented through
the introduction of a CAPTCHA challenge given reasonable assumptions about
its performance.

Table 8.1: Summary of mechanisms for the management of competitive access
to common resources.

In Table 8.1 the main characteristics of the works implemented are sum-
marised. As illustrated, in Prince the aspect of (MaxMin-resembling) fairness
was addressed, which aims to provide similar levels of resources to all users as
far as throughput is concerned. The work in HL-Hitters had the same purpose
and was oriented towards increasing efficiency and optimization.

In PacketEconomy the aim was generalised to arbitrary QoS requirements
for both throughput and latency, allowing the allocation of resources to follow
uneven distributions. In the PacketEconomy implementation extensive work
was performed to adapt the theoretical model to a realistic network and to
experimentally investigate its behaviour in order to verify the theoretical claims
presented. Finally, in the SpitGame work, the goal of fairness to legitimate VoIP
users was addressed by attempting to limit the unnecessary burden placed on
them by the presence of malicious users.

Overall, we consider the game-theoretic approach we took to address the
problems in this thesis to have produced both theoretically well-founded as
well as practically applicable results, a claim which is also supported by the
experimental results.

144

Chapter 8: Conclusions and Directions

Our future endeavours include further investigation into the use of money
as a means of coordination between selfish flows as well as examining hybrid
variants of the proposed algorithms in order to further optimize computational
performance. Additionally, it would be useful to examine their behaviour in
complex network topologies and heterogeneous router and flow compositions.
An interesting idea would also be to extend the mechanisms to additionally take
the size of the packets into account.

145

References

[1] NS-2 (Network simulator 2). http://www.isi.edu/nsnam/ns/. 24

[2] D. Acemoglu and A. Ozdaglar. Flow control, routing, and performance
from service provider viewpoint. LIDS report, 2004. 74

[3] A. Akella, S. Seshan, R. Karp, S. Shenker, and C. Papadimitriou. Selfish
behavior and stability of the Internet: a game-theoretic analysis of TCP. In
SIGCOMM ’02: Proceedings of the 2002 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 117–130, New
York, NY, USA, 2002. ACM Press. 13, 14, 16, 17, 24, 39, 57, 73

[4] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynter. A survey
on networking games in telecommunications. Computers & Operations
Research, 33[2]:286–311, 2006. 14, 73

[5] I. Androutsopoulos, E. F. Magirou, and D. K. Vassilakis. A game theoretic
model of spam e-mailing. In S. University, editor, Proc. of the 2nd Conference
on Email and Anti-Spam. USA, 2005. 114, 115, 122

[6] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and
T. Roughgarden. The price of stability for network design with fair cost
allocation. In Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pages 295–304. IEEE, 2004. 107

[7] Y. Arbitman, M. Naor, and G. Segev. De-amortized Cuckoo Hashing:
Provable Worst-Case Performance and Experimental Results. In Pro-
ceedings of the 36th International Colloquium on Automata, Languages and
Programming: Part I, ICALP ’09, pages 107–118, Berlin, Heidelberg, 2009.
Springer-Verlag. 21, 41

[8] T. Basar and R. Srikant. Revenue-maximizing pricing and capacity ex-
pansion in a many-users regime. In INFOCOM 2002. Twenty-First Annual

147

http://www.isi.edu/nsnam/ns/

REFERENCES

Joint Conference of the IEEE Computer and Communications Societies. Proceed-
ings. IEEE, 1, pages 294–301. IEEE, 2002. 74

[9] K. Basu. The Traveler’s Dilemma: Paradoxes of Rationality in Game
Theory. American Economic Review, 84[2]:391–395, may 1994. 121

[10] R. S. Boyer and J. S. Moore. A fast majority vote algorithm. Technical
Report ICSCA-CMP-32, Institute for Computer Science, University of
Texas, 1981. 39

[11] D. Braess. Über ein Paradoxon aus der Verkehrsplanung. Un-
ternehmensforschung, 12[1]:258–268, 1968. 113

[12] E. Bursztein, S. Bethard, C. Fabry, J. C. Mitchell, and D. Jurafsky. How
good are humans at solving CAPTCHA? A large scale evaluation. In Proc.
of the 2010 IEEE Symposium on Security and Privacy, pages 399–413. USA,
2010. 140

[13] H. Cavusoglu and S. Raghunathan. Configuration of detection software:
A comparison of decision and game theory approaches. Decision Analysis,
1[3]:131–148, 2004. 114, 122

[14] D.-M. Chiu and R. Jain. Analysis of the Increase / Decrease Algorithms
for Congestion Avoidance in Computer Networks. Comp.Netw.ISDN,
17[1]:1–14, jun 1989. 59

[15] R. Cole, Y. Dodis, and T. Roughgarden. How much can taxes help selfish
routing? In EC ’03: Proceedings of the 4th ACM Conference on Electronic
Commerce, pages 98–107, New York, NY, USA, 2003. ACM. 14, 58, 75

[16] R. Cole, Y. Dodis, and T. Roughgarden. Pricing network edges for het-
erogeneous selfish users. In STOC ’03: Proceedings of the thirty-fifth annual
ACM Symposium on Theory of Computing, pages 521–530, New York, NY,
USA, 2003. ACM. 14, 58

[17] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The complexity
of computing a Nash Equilibrium. Commun. ACM, 52[2]:89–97, feb 2009.
xii, 121

[18] E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Frequency estimation of
Internet packet streams with limited space. Algorithms-ESA 2002, pages
11–20, 2002. 39

148

REFERENCES

[19] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair
queueing algorithm. In ACM SIGCOMM Computer Communication Review,
19, pages 1–12. ACM, ACM New York, NY, USA, 1989. 12, 17, 19

[20] M. Dietzfelbinger and F. M. auf der Heide. A new universal class of hash
functions and dynamic hashing in real time. In P. M., editor, ICALP, 443
of LNCS, pages 6–19. Springer Berlin / Heidelberg, 1990. 21, 41

[21] D. Dominguez-Sal, M. Perez-Casany, and J. L. Larriba-Pey. Cooperative
cache analysis for distributed search engines. International Journal of Infor-
mation Technology, Communications and Convergence, 1[1]:41–65, 2010. 38

[22] S. Dritsas, V. Dritsou, B. Tsoumas, P. Constantopoulos, and D. Gritzalis.
OntoSPIT: SPIT Management through Ontologies. Computer Communica-
tions, 32[1]:203–212, 2009. 111

[23] R. Durstenfeld. Algorithm 235: Random permutation. Communications
of the ACM, 7[7]:420—-, jul 1964. 65

[24] D. Dutta, A. Goel, and J. Heidemann. Oblivious AQM and Nash Equilib-
ria. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications. IEEE Societies, 1, pages 106–113. IEEE, 2003.
17

[25] P. S. Efraimidis, L. Tsavlidis, and G. B. Mertzios. Window-games between
TCP flows. Theoretical Computer Science, 411[31-33]:2798–2817, 2010. 14,
16, 38, 39, 57, 73

[26] S. El Sawda and P. Urien. SIP security attacks and solutions: A state-of-
the-art review. In Proc. of the IEEE International Conference on Information
and Communication Technologies, pages 3187–3191, apr 2006. 111

[27] Federal Communications Commission. FCC Strengthens Consumer
Protections Against Telemarketing Robocalls, feb 2012. https:
//www.fcc.gov/document/fcc-strengthens-consumer-
protections-against-telemarketing-robocalls-0. 111

[28] Federal Trade Commission. The National Do Not Call Registry: Data
Book for Fiscal Year 2012, oct 2012. https://www.ftc.gov/reports/
national-do-not-call-registry-data-book-fiscal-year-
2012. 111

[29] Federal Trade Commission. FTC Settles “Rachel” Robocall Enforcement
Case, jul 2013. http://www.ftc.gov/opa/2013/07/aplus.shtm.
112

149

https://www.fcc.gov/document/fcc-strengthens-consumer-protections-against-telemarketing-robocalls-0
https://www.fcc.gov/document/fcc-strengthens-consumer-protections-against-telemarketing-robocalls-0
https://www.fcc.gov/document/fcc-strengthens-consumer-protections-against-telemarketing-robocalls-0
https://www.ftc.gov/reports/national-do-not-call-registry-data-book-fiscal-year-2012
https://www.ftc.gov/reports/national-do-not-call-registry-data-book-fiscal-year-2012
https://www.ftc.gov/reports/national-do-not-call-registry-data-book-fiscal-year-2012
http://www.ftc.gov/opa/2013/07/aplus.shtm

REFERENCES

[30] R. A. Fisher and F. Yates. Statistical tables for biological, agricultural and
medical research. London: Oliver & Boyd, 3rd editio edition, 1948. 65

[31] S. Floyd and V. Jacobson. Random Early Detection Gateways for Conges-
tion Avoidance. IEEE/ACM Transactions on Networking, 1[4]:397–413, aug
1993. 12, 17, 84

[32] X. Gao, K. Jain, and L. J. Schulman. Fair and efficient router congestion
control. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 1050–1059, Philadelphia, PA, USA, 2004.
14, 17, 57, 73

[33] R. J. Gibbens and F. P. Kelly. Resource pricing and the evolution of con-
gestion control. Automatica, 35:1969–1985, 1999. 14, 58

[34] H. Gintis. A Markov Model of Production, Trade, and Money: Theory
and Artificial Life Simulation. Comput. Math. Organ. Theory, 3[1]:19–41,
1997. 14, 58, 60, 64

[35] H. Gintis. Game Theory Evolving: A Problem-Centered Introduction to Model-
ing Strategic Interaction. Princeton University Press, 2000. 14, 58

[36] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. Optimiza-
tion and Approximation in Deterministic Sequencing and Scheduling: a
Survey. Annals of Discrete Mathematics, 5:287–326, 1979. 67

[37] D. Graham-Rowe. A sentinel to screen phone calls technology. MIT
Technology Review, 2006. 111

[38] D. Gritzalis, P. Katsaros, S. Basagiannis, and Y. Soupionis. Formal anal-
ysis for robust anti-SPIT protection using model-checking. International
Journal of Information Security, 11[2]:121–135, 2012. 141

[39] D. Gritzalis, Y. Soupionis, V. Katos, I. Psaroudakis, P. Katsaros, and
A. Mentis. The Sphinx enigma in critical VoIP infrastructures: Human
or botnet? In I. Press, editor, 4th International Conference on Information,
Intelligence, Systems and Applications, pages 1–6. IEEE, 2013. 112

[40] E. L. Hahne. Round-Robin Scheduling for Max-Min Fairness in Data
Networks. IEEE Journal of Selected Areas in Communications, 9[7]:1024–1039,
1991. 25

[41] G. Hardin. The tragedy of the commons. Science, 162[3859]:1243–1248,
1968. 1, 15

150

REFERENCES

[42] V. Jacobson. Congestion avoidance and control. In SIGCOMM ’88: Sym-
posium proceedings on Communications architectures and protocols, pages
314–329, New York, NY, USA, 1988. ACM. 11

[43] A. Jacquet, B. Briscoe, and T. Moncaster. Policing freedom to use the
Internet resource pool. In Proceedings of the 2008 ACM CoNEXT Conference,
page 71. ACM, 2008. 35

[44] James Daniel. Boost::Unordered, nov 2011. http://www.boost.org/
doc/html/unordered.html. 42

[45] B. Johnson, J. Grossklags, N. Christin, and J. Chuang. Are security experts
useful? Bayesian Nash Equilibria for network security games with limited
information. In Proceedings of the 15th European conference on Research in
computer security, ESORICS’10, pages 588–606, Berlin, Heidelberg, sep
2010. Springer-Verlag. 113

[46] A. B. Johnston. SIP: Understanding the Session Initiation Protocol. Artech
House, 2nd edition, 2004. 112

[47] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker, V. Pax-
son, and S. Savage. Spamalytics: An empirical analysis of spam marketing
conversion. In Proceedings of the 15th ACM conference on Computer and com-
munications security, pages 3–14. ACM, oct 2008. 113

[48] R. Karp, E. Koutsoupias, C. Papadimitriou, and S. Shenker. Optimization
problems in congestion control. In FOCS ’00: Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, page 66, Washington, DC,
USA, 2000. IEEE Computer Society. 14, 57, 74

[49] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for
finding frequent elements in streams and bags. ACM Trans. Database Syst.,
28[1]:51–55, 2003. 18, 21, 22, 39

[50] F. Kelly. Charging and rate control for elastic traffic. European transactions
on Telecommunications, 8[1]:33–37, 1997. 74

[51] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communica-
tion networks: shadow prices, proportional fairness and stability. Journal
of the Operational Research society, pages 237–252, 1998. 19, 74

[52] A. D. Keromytis. Voice-over-IP Security: Research and Practice. IEEE
Security and Privacy, 8[2]:76–78, 2010. 111

151

http://www.boost.org/doc/html/unordered.html
http://www.boost.org/doc/html/unordered.html

REFERENCES

[53] A. D. Keromytis. A Comprehensive Survey of Voice over IP Security
Research. IEEE Communications Surveys & Tutorials, 14[2]:514–537, 2012.
111

[54] Y. Kim, Y. Park, J.-D. Lee, and J. Lee. Using stated-preference data to
measure the inconvenience cost of spam among Korean e-mail users.
Applied Economics Letters, 13[12]:795–800, 2006. 113

[55] N. Kiyotaki and R. Wright. On Money as a Medium of Exchange. Journal
of Political Economy, 97[4]:927–954, aug 1989. 14, 58, 60

[56] D. E. Knuth. The Art of Computer Programming, 2 : Seminu. Addison-
Wesley Publishing Company, second edition, 1981. 65

[57] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In STACS ’99:
Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer
Science, pages 404–413, 1999. 13, 57, 73, 107

[58] O. Krzikalla and I. Gaztanaga. Boost::Intrusive, nov 2011. http://
www.boost.org/doc/html/intrusive.html. 41

[59] S. Kunniyur and R. Srikant. A time scale decomposition approach to
adaptive ECN marking. In INFOCOM 2001. Twentieth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Proceedings. IEEE,
3, pages 1330–1339. IEEE, 2001. 74

[60] S. Li, W. Sun, and C. Hua. Optimal resource allocation for heterogeneous
traffic in multipath networks. International Journal of Communication Sys-
tems, 29[1]:84–98, 2016. 74

[61] H. Liu, Y. Lin, and J. Han. Methods for mining frequent items in data
streams: an overview. Knowledge and Information Systems, 26:1–30, 2011. 39

[62] S. H. Low and D. E. Lapsley. Optimization flow control—I: basic algo-
rithm and convergence. IEEE/ACM Transactions on Networking (TON),
7[6]:861–874, 1999. 74

[63] K. Ma, Q. Han, C. Chen, and X. Guan. Bandwidth allocation for coop-
erative relay networks based on Nash bargaining solution. International
Journal of Communication Systems, 25[8]:1044–1058, 2012. 74

[64] J. K. MacKie-Mason. A Smart Market for Resource Reservation in a
Multiple Quality of Service Information Network. SSRN Working Paper
Series, 2007. 108, 109

152

http://www.boost.org/doc/html/intrusive.html
http://www.boost.org/doc/html/intrusive.html

REFERENCES

[65] J. K. MacKie-Mason and H. R. Varian. Pricing the Internet. In Public
Access to the Internet, pages 269–314. Prentice Hall, 1993. 14, 58

[66] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth
flows at the congested router. In Network Protocols, 2001. Ninth International
Conference on, pages 192–201. IEEE, 2001. 12, 17

[67] M. H. Manshaei, Q. Zhu, T. Alpcan, T. Bacşar, and J.-P. Hubaux.
Game theory meets network security and privacy. ACM Comput. Surv.,
45[3]:25:1—-25:39, jul 2013. 121

[68] R. D. McKelvey, A. M. McLennan, and T. L. Turocy. Gambit: Software
tools for game theory. http://www.gambit-project.org, Version
0.2010.09.01. 135

[69] L. W. McKnight and J. P. Bailey, editors. Internet Economics. MIT Press,
Cambridge, MA, USA, 1997. 14, 58

[70] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, New
York, NY, USA, 2005. 64

[71] S. M. Muthukrishnan. Data streams: algorithms and applications. Found.
Trends Theor. Comput. Sci., 1:117–236, aug 2005. 39

[72] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press,
Cambridge, MA, 1991. 120, 121, 122

[73] J. Nagle. On Packet Switches with Infinite Storage. Communications, IEEE
Transactions on, 35[4]:435–438, 1987. 13, 16, 39

[74] J. F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the USA, 36[1]:48–49, jan 1950. 64

[75] J. F. Nash. Non-cooperative Games. Annals of Mathematics, 54[2]:286–295,
1951. 64

[76] S. Niccolini, S. Tartarelli, M. Stiemerling, and S. Srivastava. SIP Exten-
sions for SPIT Identification. Internet draft, Network Working Group, aug
2007. 112

[77] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic
Game Theory, 1. Cambridge University Press, New York, NY, USA, 2007.
13, 14, 73, 115, 120, 121

153

http://www.gambit-project.org

REFERENCES

[78] A. Odlyzko. Paris metro pricing for the Internet. In EC ’99: Proceedings of
the 1st ACM Conference on Electronic Commerce, pages 140–147, New York,
NY, USA, 1999. ACM. 14, 58

[79] M. Osborne. An Introduction to Game Theory. Oxford University Press,
2003. 13, 115, 120

[80] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press,
1994. 13, 115, 120

[81] G. Owen. Game Theory. Academic Press, NY, 1982. 13, 115

[82] K. Pagiamtzis and A. Sheikholeslami. Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey. IEEE JSSC,
41[3]:712–727, 2006. 42

[83] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker. Approximate fairness
through differential dropping. ACM SIGCOMM Computer Communication
Review, 33[2]:23–39, 2003. 12, 17

[84] R. Pan, B. Prabhakar, and K. Psounis. CHOKE, A Stateless Active Queue
Management Scheme for Approximating Fair Bandwidth Allocation. In
INFOCOM, pages 942–951, 2000. 12, 17

[85] C. Papadimitriou. Algorithms, games, and the Internet. In STOC ’01:
Proceedings of the thirty-third annual ACM symposium on Theory of computing,
STOC ’01, pages 749–753, New York, NY, USA, 2001. ACM. 13, 16, 39, 57,
73, 107, 121

[86] M. Parameswaran, H. Rui, and S. Sayin. A game theoretic model and
empirical analysis of spammer strategies. In Proc. of the Collaboration,
Electronic Messaging, Anti-Abuse and Spam Conference, 2010. 114

[87] L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann, fourth edition, 2007. 9

[88] Y. Ponomarchuk and D.-W. Seo. Intrusion Detection based on Traffic
Analysis and Fuzzy Inference System in Wireless Sensor Networks. Journal
of Convergence, 1[1]:35–42, dec 2010. 37

[89] J. Quittek, S. Niccolini, S. Tartarelli, M. Stiemerling, M. Brunner, and
T. Ewald. Detecting SPIT calls by checking human communication pat-
terns. In Proc. of the IEEE International Conference on Communications, pages
1979–1984. IEEE, 2007. 111

154

REFERENCES

[90] J. Rosenberg and C. Jennings. The Session Initiation Protocol (SIP) and
Spam. Technical report, Network Working Group, jan 2008. 111

[91] A. S. Schulz and N. S. Moses. On the performance of user equilibria
in traffic networks. In Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 86–87. Society for Industrial and
Applied Mathematics, 2003. 107

[92] A. B. Shahroudi, R. H. Khosravi, H. R. Mashhadi, and M. Ghorbanian.
Full Survey on SPIT and prediction of how VoIP providers compete in
presence of SPITters using Game-Theory. In A. Dhabi, editor, Proc. of the
2011 IEEE International Conference on Computer Applications and Industrial
Electronics (ICCAIE), pages 402–406. IEEE, 2011. 114

[93] S. J. Shenker. Making greed work in networks: a game-theoretic analy-
sis of switch service disciplines. IEEE/ACM Transactions on Networking,
3[6]:819–831, dec 1995. 13, 14, 16, 39, 57, 73

[94] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit round-
robin. Networking, IEEE/ACM Transactions on, 4[3]:375–385, 1996. 84

[95] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet Packet Size Distri-
butions: Some Observations. Technical Report ISI-TR-2007-643, USC/In-
formation Sciences Institute, may 2007. 52

[96] H. Sinnreich and A. B. Johnston. Internet Communications Using SIP:
Delivering VoIP and Multimedia Services with Session. Wiley, 2nd edition,
2006. 112

[97] A. Smith. An Inquiry into the Nature and Causes of the Wealth of Nations.
Project gu edition, 1776. 58

[98] W. E. Smith. Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3:59–66, 1956. 67

[99] Y. Soupionis, S. Dritsas, and D. Gritzalis. An adaptive policy-based
approach to SPIT management. In Proc. of the 13th European Symposium on
Research in Computer Security, pages 446–460. Springer, 2008. 112

[100] Y. Soupionis and D. Gritzalis. Audio CAPTCHA: Existing solutions
assessment and a new implementation for VoIP telephony. Computers &
Security, 29[5]:603–618, 2010. 112, 140

[101] R. Srikant. The mathematics of Internet congestion control. Springer Science
& Business Media, 2012. 74

155

REFERENCES

[102] W. R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley,
1994. 9

[103] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: achiev-
ing approximately fair bandwidth allocations in high speed networks.
SIGCOMM Comput. Commun. Rev., 28[4]:118–130, 1998. 12, 17

[104] M. Tambe, M. Jain, J. A. Pita, and A. X. Jiang. Game theory for security:
Key algorithmic principles, deployed systems, lessons learned. In Com-
munication, Control, and Computing (Allerton), 2012 50th Annual Allerton
Conference on, pages 1822–1829, 2012. 121

[105] USA Congress. Do-Not-Call Implementation Act, mar 2003. 111

[106] A. Varga. OMNeT++. In Modeling and Tools for Network Simulation, pages
35–59. Springer, 2010. 74

[107] A. Varga. The OMNET++ discrete event simulator, 2016. http://
omnetpp.org. 74

[108] A. Varga and Others. The INET Framework, 2016. http://inet.
omnetpp.org. 74

[109] D. K. Vassilakis, I. Androutsopoulos, and E. F. Magirou. A game-
theoretic investigation of the effect of human interactive proofs on spam
e-mail. In Proc. of the Fourth Conference on Email and Anti-Spam (CEAS
2007), Mountain View, CA, July 2007, 2007. 114, 115, 122

[110] T. J. Walsh and D. R. Kuhn. Challenges in securing voice over IP. IEEE
Security and Privacy, 3[3]:44–49, 2005. 111

[111] T. Wang. Choke source code for ns2, nov 2011. http://cs-people.
bu.edu/wtwang/paper. 25

[112] Wikipedia. Fisher-Yates shuffle, 2011. 65

[113] T. Wilson. Competition May Be Driving Surge in Botnets, Spam,
aug 2008. http://www.darkreading.com/competition-may-be-
driving-surge-in-botnets-spam/d/d-id/1129224. 114

[114] H. Yaïche, R. R. Mazumdar, and C. Rosenberg. A game theoretic
framework for bandwidth allocation and pricing in broadband networks.
IEEE/ACM Transactions on Networking (TON), 8[5]:667–678, 2000. 74

156

http://omnetpp.org
http://omnetpp.org
http://inet.omnetpp.org
http://inet.omnetpp.org
http://cs-people.bu.edu/wtwang/paper
http://cs-people.bu.edu/wtwang/paper
http://www.darkreading.com/competition-may-be-driving-surge-in-botnets-spam/d/d-id/1129224
http://www.darkreading.com/competition-may-be-driving-surge-in-botnets-spam/d/d-id/1129224

	Title Page
	Copyright
	Dedication
	Acknowledgements
	Abstract
	Extended Abstract in Greek
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Methodology
	1.2 Synopsis of Results
	1.3 Overview of the Thesis

	2 Background
	2.1 Networking
	2.1.1 Network Structure
	2.1.2 Network Flow Types
	2.1.2.1 Window-based Flows
	2.1.2.2 Rate-based Flows

	2.1.3 Router Queue Management

	2.2 Game Theory
	2.3 Related Work

	3 Prince: an Effective Router Mechanism for Networks with Selfish Flows
	3.1 Introduction
	3.2 Related Work
	3.3 The Prince Algorithms
	3.3.1 Theoretical Arguments
	3.3.2 Algorithm Descriptions
	3.3.3 Effects of the Packet Size Assumption

	3.4 Discussion
	3.5 Experiments
	3.5.1 Experimental Setup
	3.5.2 Results
	3.5.2.1 Synthesis of TCP Flows
	3.5.2.2 Synthesis of UDP Flows
	3.5.2.3 Mixed Synthesis of TCP and UDP Flows
	3.5.2.4 NE Results
	3.5.2.5 Comparison

	3.5.3 Multiple Flows

	3.6 Conclusions

	4 A Heaviest Hitters Limiting Mechanism with O(1) Time Complexity for Sliding-window Data Streams
	4.1 Introduction
	4.2 Related Work
	4.3 Proposed Abstract Data Type
	4.3.1 Building Blocks
	4.3.1.1 Array
	4.3.1.2 Doubly-linked List
	4.3.1.3 Hash-table

	4.3.2 Data Structure
	4.3.2.1 Layout of the Data Structure

	4.3.3 Algorithms
	4.3.3.1 Initialization
	4.3.3.2 Append
	4.3.3.3 Expire
	4.3.3.4 Query
	4.3.3.5 GetItem

	4.3.4 Space Complexity

	4.4 Results
	4.4.1 Experimental Scenarios
	4.4.2 Experiment Setup

	4.5 Discussion
	4.5.1 Scenario 1
	4.5.2 Scenario 2

	4.6 Conclusions

	5 On Money as a Means of Coordination between Network Packets
	5.1 Introduction
	5.2 An Economy for Packets
	5.3 Equilibria with Monetary Trades
	5.4 The Effect of Trades
	5.5 Conclusions

	6 Implementing PacketEconomy: Distributed Money-based QoS in OMNET++
	6.1 Introduction
	6.2 Related Work
	6.3 Implementation
	6.3.1 Packet Utility Functions
	6.3.2 Compensation Price
	6.3.3 PacketEconomy as a Service
	6.3.4 Operation Overview
	6.3.4.1 Adaptivity

	6.3.5 Technical Details
	6.3.5.1 Extension Header Description
	6.3.5.2 The TCP/IP Stack at Endpoints
	6.3.5.3 The TCP/IP Stack at Routers
	6.3.5.4 Time Source Considerations

	6.4 Experimental Setup
	6.4.1 Non-QoS Configuration
	6.4.1.1 All Cases
	6.4.1.2 Flow Composition Cases

	6.4.2 QoS Configuration
	6.4.2.1 Layer 2 Setup
	6.4.2.2 Queue Parameters
	6.4.2.3 Flow Composition Cases
	6.4.2.4 Flow Priority

	6.4.3 Collected Measurements
	6.4.4 Evaluation

	6.5 Experimental Results
	6.5.1 The TCP-only Flows Case
	6.5.2 The UDP-only Flows Case
	6.5.3 The TCP & UDP Flows Case

	6.6 Game-theoretic Aspects
	6.6.1 Incentive to Participate
	6.6.1.1 The TCP-only Flows Case
	6.6.1.2 The UDP-only Flows Case
	6.6.1.3 The TCP & UDP Flows Case

	6.6.2 Packet Size Variability
	6.6.3 Truthfulness of Packet Utility Function
	6.6.4 Price of Anarchy / Stability
	6.6.5 Relation to Smart Market

	6.7 Conclusions and Future Work

	7 A Game-theoretic Analysis of Preventing Spam over Internet Telephony via Audio CAPTCHA-based Authentication
	7.1 Introduction
	7.2 Related Work
	7.2.1 Cost of Unsolicited Communication
	7.2.2 Game-theoretic Models

	7.3 Suggested Game-theoretic Model
	7.4 Game-theoretic Analysis and Nash Equilibrium
	7.4.1 The Nash Equilibrium
	7.4.1.1 Case Analysis

	7.4.2 The NE without Audio CAPTCHAs
	7.4.3 The Benefit of Supporting Audio CAPTCHAs

	7.5 Experimental Study
	7.5.1 Experimental Results & Discussion
	7.5.2 Comparison of SpitGame and SpitGame

	7.6 Conclusions and future work

	8 Conclusions and Directions
	References

